
Final Report

VR Learning Environment with Real-Time Brain Signal
Monitoring

Brendan Jenkins, Ethan Li, Jacob Mitchell, Yumna Rizvi, Zayne Frabutt

FS: Nathalia Peixoto

CC: Peter Pachowicz

ECE 493-001

April 30th, 2021

1

Executive summary

As technology’s grasp over society continues to strengthen, deeper applications of its use are
considered for everyday life. The rise of the Coronavirus pandemic shocked the world into a
socially distanced lifestyle, highlighting shortcomings of lesser-used technologies caused by the
mass influx of user volume. Since many technological applications were implemented on a
smaller scale or as alternative solutions, ease-of-use and efficiency suffered from this transition.
One of the biggest challenges faced by society is centred around education, causing students and
teachers who have only experienced traditional classrooms to be pushed into implementing
different methods of instruction. Our project stems from the limitations of virtual learning,
providing a solution to enhance the online education experience.

We have created a project centred on distanced learning, providing a virtual environment that
allows students to dive deeper into their educational experience. The VR modules created for this
project are targeted towards STEM classes, allowing for supplemental exposure to course
material through module interaction. To enhance the virtual experience for the user, the Leap
Motion controller was implemented, allowing for hand movements to control environmental
interaction. This solution allows for an immersive experience that holds the attention of the user
when learning outside of the classroom. Aside from providing benefits to the students, several
features have been provided to enhance the teacher experience too.

The virtual learning environment we have created is supplemented with brain signal monitoring
using the Emotiv EPOC+ headset. This headset monitors specific points on the head, providing
insight into a student’s perception of the module. For ease of use, the raw brain signal values are
measured from the user and displayed in a format that allows for instant teacher interpretation.
These values are accessible by the teacher in real-time. The learning module prompts the user to
connect to a server, allowing for the teacher to monitor their entire class during a lesson. This
connection allows the option for the teacher to control a student’s module settings before and
during module runtime. From the data collected, a teacher can tailor their lessons to meet student
needs. This information can also be used to filter the struggling students out from the rest,
allowing for the teacher to provide additional aid. Overall, our project provides an in-depth
solution to challenges stemming from distance learning. The provided learning modules allow
for an immersive student experience while allowing for teachers to obtain their students’
physiological data to improve lesson scope and address struggling students.

2

Table of Contents

Topic Page Number

1. Executive Summary 1

2. Table of contents 2

3. Approach 3

4. Technical Section 9

5. Gameplay Functionality 11

6. Experimentation & Validation 23

7. Results 42

8. Other Issues 45

9. Administrative Section 48

10. Lessons Learned 51

11. References 53

12. Appendix A: Draft Proposal 55

13. Appendix B: Design Document 75

14. Appendix C: Software printout 101

3

Approach

Project Origin

Adaptations to the Coronavirus pandemic have forced society to live socially distanced from one
another. This lifestyle caused a shift from a traditional classroom environment to online learning
classrooms. Many people have never experienced education using virtual methods, causing
issues for both students and teachers. Many students, especially grade school students, are used
to learning predominantly through teacher instruction. Learning in a classroom can limit
distractions, allowing for greater attention directed towards the lessons. However, distance
learning allows students to attend class from their households, creating an environment with
several distractions. This can cause issues with student performance and understanding of core
concepts required for higher-level education.

Teachers also face similar issues from online instruction, many of which have never experienced
distance education before Covid. The methods used to teach students in a classroom environment
are limited, creating a necessity for teacher adaptation. Online instruction also creates a
disconnect between students and teachers, causing teachers to rely solely on grades to determine
a students necessity for additional help. Many teachers for STEM courses provide hands-on
methods for learning to supplement lessons but suffer from limited options due to the nature of
distance learning.

Our project aims to address the issues outlined above. For students, we have created an
environment that helps limit distractions. This environment also provides a more interactive
learning experience, providing custom modules that can supplement lesson plans. From a
teacher’s perspective, our solution provides methods to more clearly understand the
physiological state of students when attempting to complete their assigned tasks. This can
provide the opportunity for teachers to address struggling students before issues are reflected in
their grades. Overall, our project aims to create an environment that promotes education through
hands-on learning, while allowing teachers to better understand the impact their lessons have on
individual students.

Solution to the Problem

There are several components that our project incorporates to address the needs discussed above.
Our design incorporates a virtual reality environment viewed through a NeuTab headset. Using a
virtual reality environment allows students to experience supplemental lessons in an environment

4

with fewer distractions. The virtual environments are created in Unity, allowing for custom
modules to be created for the needs of a class. Also, to provide a more hands-on experience for
students, the project incorporates a Leap Motion controller. This controller is mounted on the
NeuTab, allowing students to have hands-on experience within the created modules. This helps
address multiple problems that students face while learning from home.

We have incorporated several features to benefit the teaching experience as well. First, our
project centres around the use of the Emotiv EPOC+ headset. This headset contains fourteen
sensors that can read raw brainwave data from students. Using the Emotiv Cortex API, these
numbers are processed and categorized in the following metrics: stress, engagement, interest,
excitement, focus and relaxation. To provide this information to the teacher, we have created a
teacher hub that links the entire class to one location. This allows the teacher the ability to
monitor multiple students at once, providing the ability to determine which students are
struggling the most with the material. We have also included methods to allow the teacher to
modify the settings of a student’s current module and talk to the students specifically through a
designated voice channel. Using our project allows for a teacher to assign hands-on assignments,
providing a method to view student progress during completion. This method solves issues
centred on disconnect, providing insight for structuring future lessons and addressing students in
need.

Alternative Designs

Google Cardboard vs Unity VR View:
When choosing an approach for displaying our VR environment, we were tasked with choosing
software to split the screen for VR view. Google Cardboard view allows for splitting the screen
in Unity with an SDK provided by Google. We considered this method first because we were
unable to figure out how to use Unity VR view in the version of Unity our project was
constructed in. The biggest issue with Google Cardboard involved compatibility issues with
displaying content on a computer screen. This meant that we would need to choose whether we
wanted to display our project on a phone or an LCD screen. Since we did not own a phone to test
on and fully testing the project with Google Cardboard requires consistently exporting our
project, we decided to use the Unity VR View.

Leap Motion vs Custom Controller:
To create a full experience for our VR environment, we needed a method for the user to interact
with the modules. We were considering a custom controller that could be tailored to our projects
specific needs. This controller would have used an accelerometer to control a cursor in Unity

5

while housing a button for selecting the object the cursor is hovering over. A Raspberry Zero
would obtain the data from both input devices and use it to control the module. This controller
would be housed in a 3D printed case that would protect all the components while providing a
comfortable grip. The following figures demonstrate the concept for the custom controller
design. The difficulty of the implementation in Unity coupled with the efficiency of the Leap
Motion controller pushed us away from using a custom controller in our design.

Figure 1: Design for Custom Controller

NeuTab vs 3D printed headset:
When originally discussing concepts for this project, we had had the idea to create a custom 3D
printed VR headset. This idea seemed attractive, as we could create a headset that could satisfy
the needs for sensor placement. Creating a VR headset also provided flexibility because the
spacing between the Emotiv EPOC+ and Neutab are tight. However, there were several problems
with creating a VR headset. First, methods for adding parts that weren’t 3D printed were
difficult. We were unsure how to properly add cushions, straps, and lenses to the headset.
Another issue stemmed from a lack of experience with 3D printing. This idea sounds nice on
paper, but without proper implementation, the VR experience would be diminished. These
reasons led us to choose the NeuTab headset for the implementation of our project.

6

Figure 2: 3D Model for Our Custom Headset

Emotiv vs Muse:
When deciding which brain wave monitoring headset to use for our project, several things were
needing to be considered. First, the amount of space needed for proper monitoring was
considered. The Muse is a headband, sensing the forehead to obtain brainwave data. The Muse
takes up significantly less space on the head than the Emotiv. However, since the Muse has fewer
sensors than the Emotiv, the data that can be obtained is significantly less. The Muse also falls
short of the Emotiv headset because Emotiv has created SDKs for use in Unity, allowing for
Emotiv use for brain monitoring and tilt detection. Overall, the Muse would be a decent backup
choice for the Emotiv; however, due to shortcomings in overall functionality mixed with the
lesser potential for data gathering, we decided to use the Muse for our project.

7

Contribution of Team Members

Brendan Jenkins
From the beginning of the project, Brendan helped with the design of the system and with
documentation. He also assisted with the creation of alternative solutions to the project as well.
Another task was to 3D model different designs if alternative solutions should be needed, while
also 3D printing at least one of the designs to experiment with sizing and visualization. A large
task he was able to complete was creating an emotiv cortex app to send our data packets into the
unity game software successfully. Brendan helped with being able to use the 9-axis IMU (head
tracking unit) data consisting of accelerometer data, gyroscope data, magnetometer data, and
quaternion data that fed into our data stream to aid with the head tracking software script in
unity. Lastly, he helped validate all data streams used within the project using MatLab and
Simulink to figure outbounds and noise values.

Ethan Li
Ethan assisted with the management of the team. He created the outline of the tasks throughout
the year along with a timeline of completion per task. He led the meetings every week, ensuring
all group members were on task and providing help to those who had long roadblocks that would
disrupt the timeline of the project. Along with assisting with management, Ethan worked on
creating the module designs within unity on a separate unity instance than the main one. The
creation of the modules included functionality, aesthetics, and scripting. This was to guarantee
that the modules were functional with and without the extra components added.

Jacob Mitchell
Jacob was the project manager for the team. He facilitated all communication with the faculty
supervisor as well as the course coordinator. He managed the weekly task forms and kept up to
date on any documents that needed to be submitted throughout the class. Alongside this, he
created the teacher hub and set up the networking connection between the student and the
teacher. This included implementing a student to teacher voice chat that allows for the teacher to
speak directly to students. He was also the one to implement the VR interfacing that allows for a
VR goggle view to be displayed using a regular screen without built-in VR capabilities. Lastly,
he was responsible for compiling and editing the multiple video presentations throughout the
course.

8

Yumna Rizvi
Yumna assisted with data analysis for cleaning, extracting and modelling data and performing
validation strategies alongside her team members. Along with assisting with documentation and
presenting alternative ideas, she assisted with tasks such as creating high-level data diagrams.
She helped ensure documentation maintained a consistent flow of ideas. Additionally, she helped
in problem-solving in areas such as establishing a server and virtual machine for the
implementation of the project. She highlighted issues and risks and helped outline the need for
deliverables and deadlines throughout the year. Additionally, she performed research on the
physiological aspects and architecture of the project. She assisted with the design of the
hardware components and EEG signals pattern research. Lastly, she helped analyze the various
strategies of testing the project whilst training alongside VR professionals as a VR quality
assurance intern in an industry-level environment to gain insight into the scope of the project.

Zayne Frabutt
Zayne was responsible for creating module designs on the main unity instance. This involved
creation of several modules, scripting, and implementation of Emotiv and Leap Motion SDKs.
When implementing the SDKs, he helped decipher code to allow for efficient use tailored to the
project's specific needs. Zayne was also responsible for the bulk of Leap Motion testing, as well
as assisting in gathering data from the Emotiv. This involved designing experimentation plans to
push the project along. During the early stages of the project, he played a big role in researching
potential solutions for the project, developing lists of solutions and alternative solutions. Zayne
was also responsible for the majority of the written content found on the project’s website.
Additionally, he helped proofread and finalize documents to ensure submission quality.

9

Technical section

Our system incorporates three major components: the Epoc+, leap motion, and unity engine. As
a top-level design, the Epoc+ and the leap motion will take in data streams from the user and
feed them to the unity engine. The unity engine will host the learning modules and the hub,
creating an interactive interface for both the user and the educator. This top-level overview will
serve as the basis for the project.

Figure 3: Level-1 diagram

This level 1 diagram displays the system overview from the top-level design with descriptions of
what each component will be used for. Taking a step into it, the Epoc+ is used for motion data
and the EEG data from the user. The leap motion is used for hand movement data from the user.

These data streams can be visualized in figure 4, describing the initial system architecture.

Figure 4: System architecture 1

10

With figure 5, the data streams are connected directly to the unity engine. The controller data
will allow the user to interact with the module design within the engine. Using the motion data,
the user will have control of the x-axis camera rotation, and with the EEG data, the engine will
monitor the performance metrics of the user. Once the data streams are processed, the scenes are
produced and outputted to both ends of the users.

Figure 5: System architecture 2

Figure 6 portrays how the scenes will be viewed by both users.

Figure 6: System architecture 3

11

Gameplay Functionality

Short Introduction

We currently have the Unity scenes built in the following order: initial setup, module selection,
and selected module. The initial setup prompts the user to follow instructions to properly
calibrate the EPOC+ and subscribe to the correct Cortex API channels. After completion, the
user will jump into a classroom scene which is used for module selection. Currently, we only
have one learning module, but the canvas on the back of the player’s hand can be programmed to
allow the user to scroll through and select existing modules. Upon module selection, the student
is then connected to the teacher, giving the teacher access to the performance metrics and module
settings. Currently, we have designed a module that can supplement elementary addition and
subtraction. Randomly generated equations will be created, and the user will have to grab
different blocks that are moving towards them to arrive at the correct answer. Upon completion
of a specified number of levels, the application ends, storing the performance metrics in a file for
the teacher to access at a later point in time.

Initial Set-Up

Figure 7: Bluetooth Connection for Emotiv in Initial Setup

12

The first thing the student will do before entering the learning module selection will be
connecting the EPOC+ and Cortex data via bluetooth dongle as shown above in figure 7. After a
successful connection through bluetooth, the scene will automatically take the student to the next
stage, prompting the user to put the EPOC+ on their head and ensure all contact points are
properly calibrated. This is denoted using the colors green, yellow, and red. Green represents the
strong connection, while red connection signifies a weak sensor connection. Shown in figures 8
and 9 is an example of contact connections versus bad contact connections.

Figure 8: Showing bad contact quality

(Next Page)

13

Figure 9: Showing good contact quality

There will also be a percentage indicating how well your connections are on a scale of 0-100
percent with 0 percent being no connection and 100 percent indicating perfect connection for
picking up brain signals. After all contacts are connected the user will click “Done” and will be
taken into the scene in which the user will subscribe to all the data streams. The user will click
three buttons for subscription of EEG data, motion data, and performance metrics shown as
“Subscribe EEG”, “Subscribe MOT”, and “Subscribe PM” respectively shown in figure 10
below.

(Next Page)

14

Figure 10: All data metric subscriptions

Lastly, the user will click “start game” and be put into the classroom environment shown below
in figure 11. The user will put on the VR headset and then they will select a learning module to
begin their game using the settings menu attached to the users hand

Figure 11: Classroom starts room

15

Learning environment

Figure 12: Module starting

The learning environment is where the student and the teacher will perform most of the module
interaction. After choosing the module in the set up phase, the student will be spawned onto a
platform with hand models connected via the leap motion data stream. The platform will extend
into three lanes beyond the student. At the ends of the lanes, a “plus” or a “minus” model, with a
randomized numerical value in a range correlating to the equation on the GUI of the student’s
VR view, will be spawned in and sent towards the student. The student will then be able to
interact with the game objects to solve the equation by grabbing the models with the leap motion
hand models, as can be seen in figure 12.

(Next Page)

16

Figure 13: Interaction of models

In figure 13, the models are currently displayed as their symbol of operation to the equation. If
the player grabs a “plus” model, the value will have an operation of addition and be added to the
total count. Similarly, the “minus” model will set the operation to subtraction and decrement the
counter. The counter will be used to solve the equation set on the GUI and can be modified as
many times as the student grabs blocks, unless the value reaches the out of bounds area (Adding
above the equation’s result or subtracting below 0). Once the student reaches an exact match, the
module will notify the student of their accomplishments and move on to a new equation.
Whether the student correctly reaches the answer or stumbles upon an out of bounds count, the
total amount of correct equations will be incremented or remain the same, respectively. This
count will be proportional to the total number of attempts made and will be displayed on the GUI
of the student and the teacher.

17

Figure 14: Raycasting fingers

To create the module, we connected several scripts to multiple game objects. With the operation
models, we incorporated a spawning script to randomize the location of the model and set the
settings for the model (i.e. value, operation, speed, etc). The models will then have their position
updated to move forward each frame, at a rate proportional to the speed and their rotational
location. For the student model, the leap motion SDK was imported, allowing us to visualize the
hand data stream within unity. The hand models were then modified to include ray casting, as
seen in figure 14, a method of intersecting with any collision model and storing their logistics
data. To bring all of the scripts together, we included a “game manager” that interacted with all
of the script’s functionality like setting the model logistics and collision data.

The module will concurrently monitor the student’s performance metrics during the time it takes
to solve an equation. This data will be sent directly to the teacher hub where the settings can be
interacted with by the teacher using the “game manager” to aid in the student’s experience.

18

Teacher hub

Talk about the data being sent to a buffer, and how it will be writing to a csv file for storage of
how the student was doing over time

The teacher hub is the program that the teacher will use to monitor the students during their
usage of the modules. It will provide data for the teacher on each of the performance metrics,
including stress, engagement, focus, interest , relaxation, and excitement. In order to start up the
teacher hub, you simply click “Host Button” and then the students’ information will appear.

Figure 15:Teacher hub view

When viewing the student view, the teacher is able to join a voice chat with the student. This
allows the teacher to directly interact with the student and see how what they are saying is
affecting them in real time. The teacher is also able to directly increase and decrease the speed of
the boxes on the students’ side. This is also adjustable from the students’ side using a slider on
their hand models. All these functionalities are shown above in figure 15.

19

Figure 16: csv file of performance metrics data

The performance metrics will also be exported to a separate csv file as shown in figure 16. This
will allow the teacher to go back and review the students’ performance metrics values throughout
the session.

Right now, there are only two students on the menu, but this could be easily increased as the
need comes along. We only need two students for our demonstration. Currently, the networking
protocols we implemented do not have the capability to allow each student to have their own
unique rooms and have the teacher join them, but this is going to be implemented soon within the
MLAPI networking protocol, so it could be added in the future.

20

Software Datapath

The software datapath of our system requires the collaboration of several application
programming interfaces (API’s), software development kits (SDK’s)., and scripts created by the
group. There are four main data paths that we needed to create: head tracking, cube interaction,
game management, and the teacher hub. Figure 17 below shows our implementation for mapping
real-world quaternion values into Unity quaternion values. The data subscriber reads motion data
from the Cortex API and transfers it into the camera movement script. This script uses Euler
Angles to change the quaternion values from the data stream to Quaternion objects. These
Quaternions are then applied to transforms and attached to the leap rig, providing a camera
rotation effect.

Figure 17: Head tracking software functionality

The next major data path we needed to address followed game management. This requires both
cube interaction (figure 18) and game management (figure 19) scripts. The difficulty for the
module revolves around the speed blocks move towards the player. Our module has two methods
to modify this speed. The teacher has buttons mapped to each student for incrementing and
decrementing block speed. The values increment the speed by .2 and are bounded between .5 and
2.5. These values are passed through the settings menu into the box movement scripts. After the
boxes are spawned, they can be destroyed in two ways. Boxes are automatically destroyed after a
certain amount of time to prevent lag from large quantities of Objects in the environment at one
time. The other method of destruction revolves around ray casting. Each finger has a ray
extending from it, detecting when it touches another object. In rayCastTest.cs, an object
contacting a ray is destroyed, outputting the value associated with the block.

21

This value is passed along and sent into the game manager. The value is then added or subtracted
from the current total depending on the type of block that is contacted. This value is displayed in
a GUI for the user, allowing the user to determine the next block to grab. If the total value is less
than the correct answer, the game allows the user to continue playing. A value equal to or above
the correct answer will cause the game to restart. If the value is incorrect, only the completed
number of games will increase, denoting an incorrect answer in the total score. On the other
hand, if the player collects a value equal to the correct answer, the game will increment both the
correct and completed values. The GUI allows for the user to track the equations attempting to
be solved, the current value they have collected, and the current ratio of correct to completed
iterations of the module.

Figure 18: Detailed cube software functionality

Figure 19: Game manager software functionality

22

The last data path we needed to build centered around the teacher hub as shown in figure 20. The
performance metric data stream is sent through the settings menu into the player prefab. To use
network transports a default player prefab needed to be created. This prefab is the same on all
Unity instances, containing shared scripts that pass around variables. EventPlayer.cs passes the
performance metric data from the Event Player to the Event Manager. The values are then
displayed in sliders for the teacher to view and saved in a CSV file to allow for accessing data at
a later point in time.

Figure 20: Teacher hub software functionality

(Next Page)

23

Experimentation & Validation

Test #1 - Head Tracking

Discussion
One of our experiments was to use the data stream coming from our EPOC+ headset that
consisted of quaternion data (q0-q3), gyroscope data, accelerometer data, and magnetometer data
and mapping it into our 3D environment for head tracking. The gyroscope data, accelerometer
data, and magnetometer data all combined to create the quaternions. The quaternions are just
representations of a vector in 3D space of the form w + xi + yj + zk, which will define the head
movement. The variables w, x, y, z represent q0, q1, q2, and q3 in a range of [-1,1] respectively.
The purpose of this experiment was to use these 3D quaternion vectors and convert them to Euler
angles of pitch, roll and yaw for the rotation of head movement in 3D Space. This experiment
also helped us solve an issue called gimbal lock which will be discussed below.

Apparatus from Experimentation

Figure 21: Apparatus from Experimentation

24

Data collection
Here is a snippet of the quaternion data streams from a CSV file.

A snippet of datastream as column vectors:

q0 q1 q2 q3

0.552257 0.424988 -0.625244 0.351379

0.552232 0.42511 -0.625183 0.351379

0.552328 0.425232 -0.624878 0.351624

0.552518 0.425232 -0.624573 0.351868

0.552779 0.425049 -0.624329 0.352112

0.552946 0.424438 -0.62439 0.352478

0.553064 0.423889 -0.624451 0.352844

0.553426 0.423523 -0.624207 0.353149

0.553698 0.423401 -0.62384 0.353516

0.553064 0.423889 -0.624451 0.352844

0.55397 0.423279 -0.623474 0.353882

0.553699 0.423096 -0.623596 0.354309

0.553492 0.422791 -0.623779 0.354675

Table 1: CSV file data for quaternion data

Validation

For validation, we used MatLab to plot the pitch, roll, and yaw angles over time. This MATLAB
code extracts quaternion data from a CSV file, calculates the pitch roll and yaw angles as so. The
x-axis (yaw) is limited from -180 to 180 degrees, the y axis (pitch) from -90 to 90 degrees, and
the roll (z-axis) from -180 to 180 degrees.There are instances where gimbal lock causes the
angles to wrap back around. For example, yaw is limited from -180 to 180 degrees, but when it
the euler angle goes below -180 degrees it will wrap back up at 180 degrees in order to show 360
degrees of motion.Our criteria for validation is that angles produced in the EmotivPro software
and Unity match the angles within MATLAB to validate our rotation angles are correct. Within

25

the first validation test we are going to make sure all rotations are correct without any gimbal
lock. Then do another validation test and interpret a graph with gimbal lock.

Code Representation functionality of validation:
%%ECE-493-001
%VR learning environment with real time brain signal monitoring
% 2/21/2021
opengl software
quat = importdata('quattest.xlsx'); %insert filename of data
q0 = quat(:,1); % grabbing column vectors for quaternion data
q1 = quat(:,2); %column 2
q2 = quat(:,3); %column 3
q3 = quat(:,4); %column 3
%creating time vector
T = 1/64; % sampling rate of 64 hertz
t = (0:1261-1)*T; %creates time vector based off of EPOC+ sampling rate
% yaw, pitch, roll angle Vector
[yaw, pitch, roll] = quat2angle([q0 q1 q2 q3]);%converts quaternion data to yaw
pitch and roll
yawangle = (180/pi)*yaw;
pitchangle = (180/pi)*pitch;
rollangle = (180/pi)*roll;
% Rotation angle Vector
eul = quat2eul([q0 q1 q2 q3]); % This is another method to get the rotation
angles.
XAngle = eul(:,1)*(180/pi);
YAngle = eul(:,2)*(180/pi);
ZAngle = eul(:,3)*(180/pi);
%plotting data
figure;
plot(t,rollangle, t, pitchangle, t, yawangle);
title('Quaternion Angles Overtime');
xlabel('time(seconds)');
ylabel('Angle(degrees)');
legend('Roll Angle', 'Pitch Angle', 'Yaw Angle');

26

Validation test - No gimbal lock

This separate run shows us rotating the EPOC+ headset for 12 seconds.

Figure 22: Pitch, Roll and Yaw Angles for validation test #2

Within this test we experienced completely no gimbal lock when rotating the headset. We were
able to compare these rotation angles to how we were rotating the headset within our experiment.
In this experiment we rotated upwards (pitch), rolled right (roll), and turned right (yaw). We
rotated the headset around 75 degrees depicted above with the pitch angle in figure 22, meaning
we rotated the headset upward toward the ceiling 75 degrees as we did in the experiment. Next,
we rolled the headset to the right about 30 degrees back to the initial position which is what is
shown from about 2 seconds to 8 seconds in figure 22. We then, again turned the headset right
about 30 degrees and that is validated in the figure above. This experiment again, helps us
validate our rotation data in order to use it for our application in unity.

27

Validation test #2 - With gimbal lock

This run is showing us rotating the headset in order to trigger gimbal lock across some rotation
axes.

Figure 23: Yaw Angle with gimbal lock

Figure 24: Roll Angle

28

Figure 25: Pitch Angle

This validation test was similar to the previous except this time instead of turning right a second
time we turned left, meaning that our Yaw angle would be less than -180 as shown in figure 23.
Figures 24 &25 showing pitch and roll and angles being similar to the previous validation
experiment since the roll and upward movement was unchanged. Around 7.5s we see what
gimbal lock causes as it makes the angle warp back around from -180 and puts the continuation
of the angles starting at 180. This is due to a limitation of representing 3D angles using euler
angles. With this gimbal lock example it helped us validate that we were correctly converting
and representing the angles in 3D space.

Conclusion
The experiment with head tracking and validation was successful. We were able to compare the
matlab angles to the in EmotivPro and the angles printed in unity with 100% certainty. This
validation also helped us understand the issue of gimbal lock, in which we used methods within
unity to help us solve these issues.

29

Test #2 - Performance metrics

Discussion

The objective of this experiment is to test performance metrics versus actual metrics.
This consists of reading data at a sampling rate of 0.1 Hz in a range of [-1,1] with any value
below 0 meaning the performance metric is not active with above 0 being an active performance
metric. When any of the performance metrics of Stress (FRU), Engagement (ENG), Interest
(VAL), Excitement (EXC), Focus (FOC), and lastly Relaxation (MED) are read, we will verify
by asking the user if they are feeling what the performance metric is outputting. E.g., the stress
performance metric is outputting a 0.5 indicating a user is moderately stressed. This experiment
is to help incorporate this data into our game and know what noise needs to be filtered out.

Pictures of Experiment (using emotiv pro app)

Figure 26:Experimental Apparatus

30

Data collection

Below is raw data pulled straight from our emotiv cortex app. As you can see in table 1, the
performance metrics shown below have a range from 0 to 1 unscaled with “-1” indicating the
performance metric is not active. The closer the value is to 0 the lower the performance metric is
and the higher the number the more of that performance metric is active with a value of 1 being
the max. For simplicity, for user-specified we scaled these values by multiplying by 100 for a
range of [0 to 100] for actual displayed data outside of experimentation.

PM.Engageme
nt.Scaled

PM.Excitemen
t.Scaled

PM.Stress.
Scaled

PM.Relaxation
.Scaled

PM.Interest.
Scaled

PM.Focus.
Scaled

0.66 0.40 0.17 0.33 0.63 0.21

0.69 0.19 0.28 0.27 0.53 0.33

0.70 0.12 0.43 0.20 0.52 0.40

0.75 0.05 0.56 0.23 0.58 0.37

0.35 0.01 0.38 0.11 0.26 0.21

0.80 0.18 0.88 0.41 0.68 0.41

0.81 0.22 0.91 0.34 0.62 0.46

0.73 0.12 0.57 0.24 0.55 0.40

0.70 0.11 0.91 0.42 0.63 0.43

0.50 0.24 0.92 0.69 0.74 0.32

0.30 0.11 0.37 0.15 0.27 0.21

0.15 0.31 -1 0.05 0.68 -1

0.77 0.62 0.37 0.26 0.64 0.30

0.58 0.45 0.96 0.57 0.76 0.54

0.40 0.31 0.88 0.69 0.67 0.47

0.470 0.10 0.53 0.56 0.53 0.36

0.287 0.12 -1 0.12 0.24 -1

Table 2: CSV Data for Excitement (EXC)

31

Validation

Below we have our validations for all 6 performance metrics all plotted for at least 3 minutes. All
tests standard deviations and averages were calculated for all performance metrics.
Code Representation functionality of validation:
clear
opengl software
pm = importdata('performance metric.csv'); %insert filename of data
engage = pm.data(:,1)*100; % grabbing column vectors for pm data
excite= pm.data(:,2)*100; %column 2
stress = pm.data(:,3)*100; %column 3
relax = pm.data(:,4)*100; %column 4
interest = pm.data(:,5)*100; %column 5
focus= pm.data(:,6)*100; %column 6
T = 1/0.1;
t = (0:17-1)*T;
figure;
grid on
plot(t, engage)
legend('Engagement');
plot(t,excite)
plot(t, stress, t, relax,'LineWidth',2)
plot(t, engage, 'LineWidth',2)
plot(t, interest)
plot(t, focus)
xlabel('time(seconds)');
ylabel('Metric');

32

Tests

Figure 27: Stress and Relaxation graphed overtime

During this validation test, we were expecting stress (FRU) to go down and for relaxation (MED)
to go up by asking the user to do deep breathing exercises. At the start we told the user to do
deep breathing for 120 seconds. Shown in figure 27, after about 50 seconds we began to see the
data trend in the right direction. With the average of stress after 50 seconds being 38.75 and the
average of relaxation being 59.4. Although we did see a spike in stress around 160 seconds as
sometimes there are outliers output from the data stream. In conclusion, our theoretical
predictions matched our experiment validating our experiment.

33

Figure 28: Focus plotted overtime

Next we wanted to validate our focus (FOC) performance metric. We assumed that if we could
get the user extremely focused on something, then distract the user we should see a dramatic
drop in focus. We made the user focused at about 20-30 seconds as in shown figure 28. After
distracting the user the focus metric dropped considerably. In conclusion, our theoretical
predictions matched our experiment validating our experiment.

34

Figure 29: Interest plotted overtime

Within this test we were looking to validate our interest (VAL) metric. Interest is a hard metric to
validate because users' interests vary. So we finally found something that triggered the users
interest twice by playing a youtube video containing their favorite creator. In figure 29, around
55 seconds and 150 seconds respectively we saw the users interest peak when watching the
videos. To verify these spikes were true, we had the user look away for 10 seconds around 50
seconds in order to see if the metric went lower. In conclusion, our theoretical predictions
matched our experiment validating our experiment.

35

Figure 30: Engagement plotted overtime

Lastly, we wanted to test the engagement (ENG) metric. We did this easily by just telling the user
to play our game for about 2 minutes and 30 seconds. We saw an upward trend in excitement the
longer the user played the game as shown in figure 30. After we told the user to stop playing
there was a considerable drop in the engagement metric for these tests. In conclusion, our
theoretical predictions matched our experiment validating our experiment.

Conclusion

The criteria for validation of performance metrics consists of asking the user if what they are
experiencing is reflected by what the EPOC+ headset performance metric is indicating with a
success rate in comparison of at least 90%. We were able to verify our theoretical results while
having a 100% success rate in our brain signal testing. We also calculate the average and
standard deviation of our data. Our data was within 3 standard deviations of the mean also
helping validate our data as shown below in table 3.

36

Statistic: Engagement Excitement Stress Relaxation Interest Focus

Average 74.3 50.6 46.1 32.6 51.1 51.338748

Standard
Dev. 0.105 0.184 0.174 0.129 0.09 0.109

Table 3: Average and standard deviation of metrics

(Next Page)

37

Test #3 - Unity Gameplay

Discussion

This experiment consists of testing the implementation of Leap Motion and Emotiv SDKs,
behavior of created C# scripts, and behavior of Unity objects with our learning modules. The
Leap Motion SDK should map the users hands into the virtual environment and allow for
interaction with designated objects. This is done by changing component values in the Unity
inspector to create a mesh that the hand models can interact with. The Emotiv SDK requires two
different tests. First, we needed to ensure that the values that are being read for the Cortex API
correspond to the values obtained from both previously mentioned experiments. This ensures
correctness of data before attempting to map values for scene interactions. After ensuring correct
data, we need to link motion data from the Emotiv to camera rotation in Unity. The data taken
from the Leap Motion and the Emotiv are used to control the C# scripts. We must test that all
components within our environment behave as expected with and without interactions from other
objects.

Pictures of Experimentation

Figure 31: Screenshot of unity gameplay

38

Validation

Due to the nature of this experiment, there will be no significant numerical data obtained. For the
Leap Motion, we tested the hand mapping in example and the group created Unity scenes. The
hand models were correctly mapped in both, properly displaying the correct hand and position in
the environment. We also tested the hand models on Unity objects containing an interaction mesh
and objects without it. The user can grasp and move items containing the mesh, while hand
models pass through objects not containing this mesh. With these two constraints working
correctly, we can validate that the leap motions behave as we expected within the Unity
environment.

The first Emotiv Test requires comparison of data from the Emotiv Pro application and data
from the Cortex API. In order to test this, these two things must be run concurrently and values
should change simultaneously. This test is pretty straight forward, demonstrating correctness
upon matching data. Testing the implementation of motion data requires several conversions.
Real world quaternion values are different from Unity’s. Because of this, we needed to write a
script that converts between these two. During testing we experienced many issues due to gimbal
lock, causing the camera to behave in unexpected ways. After researching work arounds, we
determined that there was no straightforward method to work around this using transforms for
camera rotations. To combat this, we narrowed our head tracking to one axis of rotation. After
doing this, we still experienced some form of gimbal lock until we properly calibrated the
headset. After experimentation, we were successful in mapping head movements to camera
rotation without the user experiencing erratic camera movements.

The last part of this experiment centered on behaviors of C# scripts within the virtual
environment. First, we needed to ensure that our scenes were displayed in the correct order and
executed until completion. This required building the project and testing it from beginning to
end. Our startup scenes displayed first, being followed by the classroom for module selection.
After selecting the correct module, we were able to access our learning module, in which the
majority of our created scripts are found. Our project contains a game manager and spawning
script which provide that majority of functionality of the module. In order to determine if the
spawning script worked correctly, block prefabs must spawn from designated locations. The
spawned blocks must maintain a specified movement speed and both addition and subtraction
prefabs must be created. Our module correctly displayed this behavior, proving proper
implementation. The game manager script needed to properly generate equations, display the
GUI for module status, and allow for repetition of levels. Upon loading in, the GUI properly
displays the equation, the correct count and the completed count. Interacting with the prefabs

39

updates the equation, moving to the next repetition of scene on an end condition. After the
designated number of repetitions were completed the application closed as intended.

Conclusion

Implementation of Leap Motion behaved exactly as expected, showing proper mapping and
implementation with specified Unity objects. The Cortex API displayed the correct data,
allowing for matching values with the Emotiv App. This ensures that the data imported into
Unity is the same data you would get using Emotiv’s software. After making a few changes to
our head tracking script, we were properly able to map leap motion movement to camera
rotation. Although not as in depth as we planned, gimbal lock prevented smooth Unity
transformations. Lastly, we validated that our created scripts work as intended. Our game runs
from start to end, allowing for intended behavior throughout the duration of execution. Testing
each component of our modules separately and together prove that our project properly
implements our intended actions.

(Next Page)

40

Test #4 - Teacher Hub

Discussion

The purpose of this experiment is to test variable mapping on two different Unity instances. This
testing will be done on the local host using the IP address 127.0.0.1 as the main method for data
transfer. Network variables must be created to move data, allowing write permissions from both
sides of the data transmission to properly modify variables. Also, referencing network variables
on one Unity instance requires properly locating the script containing the necessary variables and
mapping them to unique network variables on the other. Using one Unity instance to modify the
settings of another requires multiple functions to be linked together because a common player
prefab is required for network transmission. Proper implementation of the teacher hub will allow
the teacher to send commands to modify the student’s module settings, while allowing the
performance metric data from the student side to be accessed by the teacher.

Validation

Just like experiment 3, this test will not require obtaining any new numerical data. This test will
be considered in multiple parts. The first experiment will involve sending data from the teacher
hub to our learning module. For each student in the teacher hub there will be buttons that can
modify the movement speed of the blocks in the student’s module. To properly implement these
buttons, each button must modify a speed variable on the teacher side and then send the updated
value to the student. This value will be read by a function on the student’s side, updating the
value in their settings. After linking the buttons, we were able to increase the speed of the block
movement to a bounded 2.5 and decrease the speed of the block movement to .5. Shown in
figure 32 below shows the buttons referenced and experimented with.

Figure 32: Testing of teacher hub

41

The second experiment tests receiving performance value metrics from the student’s module and
displaying them for the teacher. We first started by using static variables to send across the
network because the values of the performance metrics update slowly in Unity. The teacher hub
contains sliders for performance metrics, increasing the amount they are filled as the
performance metrics grow closer to 100. For the initial tests we set each metric data sent to .5,
intending each slider to fill halfway. This was not working for the longest time, but modifying
the network settings using trial and error eventually linked the two instances together. After we
were able to obtain the static variables, we tested the code to send the performance metric data.
We compared the values from the Cortex data stream to the values being displayed on the teacher
hub to determine if the values were consistent. Doing this resulted in matching data, validating
the implementation of the teacher hub.

Conclusion

From this test we were able to determine the data being sent and received by the teacher hub
were aligned with the intended values. This section of the testing took a long time because of the
network requirements. The scripts on both the teacher hub and student side needed to be the
same to ensure proper connection. We also had errors with inconsistency in the network settings
across unity instances. After properly configuring this data we had full access to all network
variables. The values of the blocks speed change almost instantaneously and the performance
metric data updates on the teacher side at the pm refresh rate from the Cortex API. Overall, we
were able to validate that the behavior of our teacher hub behaves as intended.

(Next Page)

42

Results

Figure 33: Final Project Setup

Our system design successfully incorporates the Epoc+, Leap motion controller, Unity game
engine, and the virtual reality headset. The outcome came with many redesigns of the project,
hours of debugging code, and validating EEG signals.

With the Epoc+, our system had to slowly process thousands of EEG signals per second along
with computing the performance metrics of the user. This led to the system slowing down
dramatically when running in parallel with the Unity game engine along with storing and
exporting the signals as buffers to the teacher hub. Our work around for this problem was to
average in the data and slow down the rates being stored on the teacher hub’s computer. With
that, the data still lead to accurate results while the performance of the system not degrading
nearly as much as it would have.

Our first design of the module was our group’s first scene ever created in Unity. Knowing that,
the scene had to be scrapped and our second module would build off the foundations of the first
design. After many trials, this led to our final design of the module iteration names “Equation
Saber,” modeled after the game “beat saber” with designs and functionalities to incorporate

43

learning measures. The aesthetics of the module were changed in combination with the module
redesign, as it needed to be visually pleasing while also not distracting during a lesson. We
decided on sending the objects towards the students as operators of the equations for greater
visual appeals than a box and greater focus towards the actual purpose of the module.

The system also allows for the expansion of modules to be easily incorporated into the design.
Any educator or developer can create and add a jump scene button that allows the student to
connect to it. Once connected, that scene will have full access to all of the Epoc+ data streams,
leap motion controller stream, and the teacher hub connection. We expect that the expansion of
modules will allow for higher educational lessons to be incorporated into the system, making this
a universally used environment between schools.

The teacher hub currently works as a local host connection to the student’s device. This allows
for the connection between a teacher’s computer to the student’s activity during any module. For
expansion of the system, we expect to create and host a server that the teacher hub can run on,
connecting to the student’s device from any network rather than the same computer.

The core of our system is the connection between APIs, SDKs, and the scripts that run the
module. Using the APIs, our system has a direct connection between the physical components of
our build with the software that runs it. This is critical for the Epoc+ where the EmotivPro
software receives data and the only functionality without the API is to export the data and then
read the data once written. With SDKs, our development of the leap motion controller and the
Epoc+ did not have to start from scratch. We could import the core functionality of the product
and build off of the ever so many functions that the SDK provides. This gave us ample room to
design the functionality of modules interacting with the SDKs as we did not have to design the
SDKs.

The experiments and validation was a large part of the final product of our project. The
experiments to test functionality of headtracking, performance metrics, gameplay, and the
teacher all served valuable lessons of what would and wouldn't work in our project. Within
headtracking testing, we came across maybe issues with mapping the head tracking in 3D space.
Gimbal lock was a huge problem for us as it limited our range of motion although we were able
to find workarounds to fix it for our use using unities scripting API. Performance metric
experimentation was a complete success as we were able to validate all metrics and implement it
into our Teacher hub. The only issue was the speed performance metrics were updated in the
teacher hub. With a refresh rate of 0.1 Hz, this is not ideal, but it’s the fastest speed we were able
to obtain. Within gameplay testing, everything meshed well with all of our components and we

44

were able to figure out the limitations to our game and its functionality. Within our teacher hub
testing had very few errors that were quickly debugged. Teacher hub testing was a success by
verifying our performance metrics data stream was sent correctly. In conclusion, all of our testing
was an overall success.

Overall, our system is only able to function after the testing and validation of data, connecting of
software designs, and hardware processing. We designed our system to include many separate
components that were not specifically created to be used in unison. This made it an incredibly
challenging task but well worth it. Our system is fully capable of expanding into education
beyond our reach and is only limited by the creativity of the educator designing the module.

A YouTube link to our final design: https://www.youtube.com/watch?v=QiAAxHF4gEo

(Next Page)

https://www.youtube.com/watch?v=QiAAxHF4gEo

45

Other issues

Reason for the project

This project aims to provide a way to estimate cognitive workload in a virtual reality
environment using EEG based analysis for learning. The purpose of the project is to provide a
personalized virtual learning environment to students with marginalized education opportunities
due to their environment, this project’s purpose is reinforced during the Covid-19 pandemic
where there has been a distinctive global rise in online learning. Although remote learning may
present a barrier for interactivity and instructor control that would otherwise be present in a
traditional classroom environment, this project insists that a virtual learning environment grants
the opportunity for even further personalized lessons by allowing analysis into student’s retention
rates by monitoring brain signal data [10].

Potential use of the project

Not only can this project have significant use in remote-learning situations and homeschooling,
but the scope of this project can also be extended within in-person classrooms. Personalized
learning has the potential to globally change opportunities for students living in low-educational
access environments. The end-user for this project is not only students in classes ranging from
kindergarten to higher-level education, but also in various other training situations such as
driving institutes, military and police, and also private tutors and parents. This can also benefit
students needing special accommodations for testing and learning as well as medical
professionals interested in neurofeedback for diagnosing cases such as Alzheimers and attention
deficit hyperactivity disorder (ADHD). Neurorehabilitation is a promising use for this project.
Research done by Duke University used VR and brain-computer interfaces to treat physically
impaired patients. The 12-month study with 8 patients concluded that VR can help aid in
restoring ability with patients who suffer from a chronic spinal cord injury [11].

Cost figures

The money spent for the complete build of the system, referenced in the funds spent section, was
$141.86, not including the monthly EmotivPro fee. Including the Epoc+, discontinued and
rebranded as Epoc x, the cost of the build is increased to $991.86. With that, the base price of the
system is $991.86 with a recurring monthly fee of $29.99 for the student version of the
EmotivPro software. Incorporating the engineering hours spent (Roughly 1150 hours) at a rate of
$33 an hour (The national average of entry-level electrical and computer engineers), the product

46

must make enough to cover $37,950 in hours worked, leading to a product value of $180.00
without the Epoc and $1030.00 with the Epoc (Assuming a figure of 1000 products sold) [12].

We plan to sell our product as a service without the Epoc, allowing our primary audience to buy
Epoc’s as a separate entity of the product. This allows us to value our product at $18 a month,
netting a 20% operating margin by the end of year 1, and a 100% operating margin years after
assuming no maintenance is required. However, including maintenance, a development team of 3
engineers will operate and maintain the product at the national average rate of entry-level
electrical and computer engineers, $33 an hour, leading to an extra $17 a month with the 1000
figure. Including maintenance of the product, the value is increased to $38 a month with a 20%
profit by the end of year 1, and a 55% margin afterwards.

Design Alternatives

There were several components we considered implementing, but we found that the used
components fit our needs more closely. As discussed above, we were considering using the Muse
headset for brainwave monitoring. Although this method does provide less insight into the
physiological state, the price is more friendly. The Muse costs $250.00, lowering the cost of the
headset by $600.00. Using the muse would also require changing the monitoring method in
Unity, changing the necessary SDKs if there is one currently available for the Muse. Another
implementation considered was the creation of a custom controller. This would cost $10 for a
Raspberry Pi Zero, $8 for an ADXL345, and the cost for 3D printing a casing for the headset.
This is significantly cheaper than the Leap Motion; however, implementation and maintenance
on a custom controller would be a lot more difficult. Lastly, we had two backup plans for the
implementation of the virtual environment. The first idea was the creation of a custom 3D
printed headset. Headset lenses range from $3 to upwards of $30. The lower the quality of the
lens, the less enjoyable the VR experience. Straps for VR goggles are also inexpensive, allowing
for a low total cost for the headset. After considering our options, we believed that sacrificing
quality for a low costing NeuTab headset was not worth it. Lastly, we considered using an
Oculus VR headset. This headset is a minimum of $300, making its use in the classroom
environment expensive. This would provide a higher-level experience for the user, but for our
purpose, spending the money on the Oculus vs. using the NeuTab wasn’t worth the tradeoff.

Maintainability/Maintenance

One thing we would need to do to maintain our design is to update files for the Cortex API
connection as the version for API changes. Other updates include adding new Unity modules to

47

meet the specific needs of the customer, being able to expand the target audience of the product,
and updating unity versions. Important firmware updates need to be administered for the Epoc+
as the Cortex API is updated. New VR headsets and pieces of headsets can easily be 3D printed
in case of any breaks or malfunctions of the design.

Retirement, Replacement, and Disposal of Project

Components such as the Epoc+ can be dismantled. The gold plated contacts can be recycled and
reused while the battery of the Epoc+ should be taken to permitted treatment facilities for
recycling or disposal. Other electrical components such as wires should be taken to nonprofits
that recycle electronic material. Lastly, all plastics and/or glass lenses can be normally recycled
at a general recycling plant. For replacement, old gold-plated contacts can be readministered and
plastic can be moulded for the design of newer modelled products.

(Next Page)

48

Administrative part

Discuss project progress

The start of the project was mostly figuring out how to implement our multiple different
components together. There were several different APIs that we had to read the documentation
for and implement into our unity game. We originally set out to create a VR game controlled by
brain signals but decided we wanted to do something a little more applicable to the current times.
This is when we came up with the idea for a virtual learning environment.

With the rise of COVID, we all decided that it would be a more relatable project if we were to
create something that would enhance distance learning. We found that we could use brain signals
to create an environment that would allow teachers to monitor their students’ attention span and
responsiveness to their teachings. The first semester, 492, was mostly spent creating a very basic
module and ensuring correct implementation of our different components, including the EPOC+
and the leap motion.

When we moved into 493, our focus was on refining our project and getting it all to work cleanly
together.

Did you complete all tasks successfully?

We were able to implement most of our tasks successfully. One thing that we weren't able to
finish in time and ended up having to drop was to have our teacher and students connect from
separate servers. This means that the student and the teacher would have to be on the same
network, but the cost of renting a fully dedicated server would be significantly too high for this
project., and there weren’t many other elegant solutions that didn’t inhibit the ability for the rest
of our project to work correctly.

Did you have to change the design, tasks, schedule? What were the changes and why?

We did have to change the design slightly throughout the semester. We originally started out
creating a new 3D modelled headset for our project to be housed in but ended up scrapping that
and just using the neutab instead. It had the full functionality that we were looking for in our 3D
headset, and we felt that we could have a more well-rounded project if we focused more on the
virtual modules rather than creating something that we had cheap and easy access to that would
give the same result.

49

Another early design change we implemented was to change over from raspberry pi controlled
accelerometers and handheld controllers to leap motion. Our original plan was to use two small
handheld controllers with accelerometers and basic buttons that would be used to interact with
the modules. We found that it was much more elegant and refined if we used the leap motion
API. It allows the user to have full real-time models of their hands in the modules and it makes
them much more interactive.

We were able to stick pretty well to our schedule set out at the beginning of the semester. We had
a fully working, yet somewhat basic model to display in late March. Then we began to make a
more visually pleasing and intellectually challenging module. The validation part of our project
began a little late, but we were still able to get it done on time.

Any extra (not-planned) activities you had to carry out?

An unplanned activity was having to redesign our learning module after feedback from our
Faculty Supervisor. No other unexpected activities came up apart from this instance.

Funds spent + discussion
The majority of our funds were spent on the EMOTIV pro software subscription. This
subscription is necessary to get readings from the EMOTIV EPOC+ in real-time. This means that
we had to maintain this subscription for a long amount of time to do our experimentation with
the brain signals. The rest of our budget was spent on small things such as the LCD screen, resin
for 3D printing, and USB/HDMI connections. The budget would have been significantly higher,
but the EPOC+ and leap motion were given to us by our faculty supervisor Nathalia Peixoto.

Budget - $500 Links Price

Emotive pro software subscription -
$30/mo. Emotiv $193.95

LCD Screen Amazon $46.99

Resin for 3D printing Amazon $50

USB-C hub USBCHUB 24.99

USB C extension Extension 13.99

Short HDMI cable HDMI 5.89

Total $335.81

Table 4: Budget Breakdown

https://www.emotiv.com/emotivpro/
https://www.amazon.com/USB-Hub-Multiport-Adapter-Compatible/dp/B07RL5L8ZL/ref=sr_1_4?dchild=1&keywords=usb-c+hub&qid=1608648733&sr=8-4
https://www.amazon.com/Faracent-USB-C-Extension-Cable/dp/B07KK9QXPM?th=1
https://www.amazon.com/valonic-hochwertiges-vergoldete-Kontakte-geschirmt/dp/B01JJPN9KY/ref=sr_1_4?dchild=1&keywords=short+hdmi+cable&qid=1608648763&sr=8-4

50

Man-hours devoted to the project and Discussion

Team Member: Fall 2020 (hours): Spring 2021 (hours): Totals:

Brendan Jenkins 105 135 240

Jacob Mitchell 100 130 230

Yumna Rizvi 95 115 210

Zayne Frabutt 102 136 238

Ethan Li 105 138 243

Team Totals(per
sem): 507 647 1154

Table 5: Man hours for all members

All man-hours are rough calculations based strictly on individuals project working times,
meetings, documentation, and discussions. These hours were logged in google sheets for an
accurate representation of working times. All individuals contributed over 200 man-hours for a
team total of over ~1100 man-hours worked.

(Next Page)

51

Lessons learned

General knowledge/Research:
❖ Learning up to date knowledge about brain signals

➢ Learning about various brain signal waves such as gamma, beta, alpha, delta, and
theta, which all have different meanings in terms of what a person is feeling
which is classified as emotional metrics when factoring in different channels.

❖ Research on students during online learning
➢ During our project, we were able to research issues students were having during

online learning to help aid which emotional metrics we should keep track of when
the user was in the learning environment.

Technical Skills:
❖ JavaScript Object Notation for the WebSocket

➢ Web Sockets are true concurrency and optimization of performance, resulting in
more responsive and rich web applications. We learned how to use websockets in
order to develop our Cortex App which used websockets in order to send data
packets to our Unity game.

❖ Learning C# scripts
➢ Learning new C# syntax in order to help program different functionality of our

game.
❖ Learning how to use Application Programming Interfaces (API’s)

➢ Creation and subscription to Emotiv Cortex to obtain data from Emotiv SDK
➢ Accessing Vivox API to create voice channels between teacher hub and learning

module
❖ Learning to validate data and experiments to assist drawing conclusions about

➢ Validation of data was important for us as we needed to know what the data was
actually representing as well as figuring out the noise thresholds which would
interfere with our actual data.

❖ Reading reference code and learning how to implement it for our own purposes
➢ Basic technical skill that is seen very often in industry especially geared toward

programming and/or microprocessor programming.

52

Managerial Skills (for every individual):
❖ Manage time and tasks

➢ Every group member was able to be given tasks in which they were responsible
for. Every member was responsible for completing their tasks by a specific
deadline to ensure project success.

Teaming Experience:
❖ Group work online

➢ From a group consensus we agreed that working on a large scale project during
online learning was more difficult than expected. More miniscule issues arose that
required some sort of mitigation as it was hard to find places to do group work in
person that was suitable for everyone.

❖ Consistent meeting times
➢ Meeting 2 or more times a week helped us resolve issues of individuals going off

task and making sure everyone was keeping up to date in completing everything
necessary to stay on track with our completed schedule.

(Next Page)

53

References

[1] K. Mukhtar et al, "Advantages, limitations and recommendations for online learning during
COVID-19 pandemic era," Pak. J. of Med. Sci. Quarterly, vol. 36, 2020. DOI:
10.12669/pjms.36.COVID19-S4.2785

[2] P. A.Abhang, B. W.Gawali, S. C.Mehrotra, “Chapter 2 - Technological basics of EEG
recording and operation of apparatus,” in Introduction to EEG- and Speech-Based Emotion
Recognition, P. A. Abhang, B. W. Gawali, and S. C. Mehrotra, Eds. Amsterdam: Academic
Press, 2016, pp. 19-50. DOI: https://doi.org/10.1016/B978-0-12-804490-2.00002-6

[3] Z. Scavotto, N. Peixoto, “Video games and brain wave frequencies,” 2020. [Online]. sss sss
Available: http://gamingwaves.onmason.com/

[4] Brainworks, “What Are Brain Waves?,” 2020. [Online] Available:
https://brainworksneurotherapy.com/what-are-brainwaves

[5] Emotiv, “How Does an EEG Work?,” 2020. [Online] Available:
https://www.emotiv.com/eeg-guide/

[6] S. Pathirana, M’d Gapar M’d Johar, D. Asirvatham, "Applicability of multi-agent systems
for electroencephalographic data classification," Procedia Comp. Sci., vol. 152, pg. 36-43, 2019.
10.1016/j.procs.2019.05.024

[7] Dartmouth College, Reading Brains Lab: THE ERP Technique. “Reading brains lab: the ERP
technique” [Online]. Accessed: 05-Nov-2020. Available:
https://www.dartmouth.edu/~readingbrains/ResearchFiles/ERPTechnique.html

[8] N. Badcock​, P. Mousikou, Y. Mahajan, P. De Lissa, J. Thie, G. McArthur, . . . KE, S.
“Validation of the Emotiv EPOC® EEG gaming system for measuring research quality auditory
ERPs,” PeerJ., Feb. 2013, 10.7717/peerj.38

[9] Y. Roy, H. Banville, I. Albuquerque, A. Gramfort, T. H Falk, J. Faubert. “Deep
learning-based electroencephalography analysis: a systematic review,” J. Neural Eng., vol 16,
pg.5, 2019, 10.1088/1741-2552/ab260c

[10] S. A. Alwedaie, H. A. Khabbaz, S. R. Hadi, and R. A. Hakim, “EEG-Based Analysis for

https://dx.doi.org/10.12669%2Fpjms.36.COVID19-S4.2785
https://doi.org/10.1016/B978-0-12-804490-2.00002-6
http://gamingwaves.onmason.com/
https://brainworksneurotherapy.com/what-are-brainwaves
https://www.emotiv.com/eeg-guide/
https://www.dartmouth.edu/~readingbrains/ResearchFiles/ERPTechnique.html
https://doi.org/10.7717/peerj.38
https://doi.org/10.1088/1741-2552/ab260c

54

Learning through Virtual Reality Environment,” Journal of Biosensors & Bioelectronics,
vol. 09, no. 01, 2018.

[11] Neurotech@Berkeley, “Harnessing the Power of Brain Waves in Virtual Reality:
Applications for Gaming and Medicine,” Medium, 25-Oct-2019. [Online]. Available:
https://medium.com/neurotech-berkeley/harnessing-the-power-of-brain-waves-in-virtual-reality-
applications-for-gaming-and-medicine-ea307a19c8db. [Accessed: 22-Apr-2021].

[12]“2021 Engineering Salary Statistics: College of Engineering,” Michigan Technological
University. [Online]. Available:
https://www.mtu.edu/engineering/outreach/welcome/salary/#:~:text=According%20to%20the%2
0U.S.%20Bureau,takes%20to%20become%20an%20engineer. [Accessed: 22-Apr-2021].

55

Appendix

Appendix A: Proposal (ECE-492):

Draft Proposal

VR Learning Environment with Real Time Brain Signal
Monitoring

Brendan Jenkins, Ethan Li, Jacob Mitchell. Yumna Rizvi, Zayne Frabutt

FS: Nathalia Piexoto

ECE 492-001

September 20th, 2020

56

Executive Summary
With the rise of the Covid 19 pandemic, the world has been forced to quickly adapt to unfamiliar
circumstances. Public safety guidelines have spurred a mass transition from face-to-face
meetings into online workspaces.This migration to online workspaces has had a huge impact on
the normal workday, but it also caused many changes to the traditional learning environment.
Although there have been incredible efforts from schools and teachers, some students are
struggling to adapt to new teaching techniques.

Distance learning introduces many new challenges and distractions to the average school day.
The usage of collaborative environments aids teachers with relaying information, but there are
many subjects that are taught more effectively through hands-on learning. Some ways of
simulating this hands on experience is through virtual labs and videos. This method can be
lacking, however, and it doesn’t give the immersive feeling of being in a lab. One way to
improve this method is to implement virtual reality to aid with learning. Virtual reality can give a
fully immersive experience that makes you feel like you’re actually there. It also allows you to
experience things that would never be possible otherwise, such as walking through an old civil
war museum or look at the individual parts of a cell.

While virtual reality by itself is a powerful tool, we can take it one step further to make it even
more useful for schools. By implementing a brainwave headband reader, such as the EMOTIV’s
EPOC+, we can monitor students’ attentiveness and understanding of a certain topic. In doing so,
teachers can take an active role in the students’ learning. This allows teachers to challenge a
student who is thriving, or help along one who is falling behind. Brain waves can be rather
complex, though, so we will implement an easy to read centralized interface for the teacher to
monitor a large group of students at once. To do so, we will use information gathered from the
EPOC+ and compare them to generalized brainwave patterns for concentration, understanding,
and more.

A customized game incorporating both VR and brain wave pattern analysis will allow for a
deeply immersive experience tailored to a course’s needs. Almost every course could benefit
from this, but hands-on intensive courses in the STEM and medical fields could have incredible
potential. The specially fit headset we will design alongside the EPOC+ will be a perfect tool for
implementing these kinds of games. Technology in virtual learning environments could be a
huge market in the future.

57

Problem Statement
Introduction/Motivation

During the COVID -19 pandemic, learning can be extremely difficult due to the situation it puts
students and teachers in. With most schools and universities transitioning to virtual learning, it
can be especially tough for those students who benefit the most from in-person teachings. As
this has been a pressing issue over the past seven months, the issue needs a solution to help both
students and teachers in this situation. Most students learn in different ways and most can't focus
in these virtual learning environments as external factors can take over that would otherwise not
be there in a classroom environment. This creates major limitations in virtual learning
environments. Shown in figure 1, is a study which teachers and students identified the limitations
of virtual learning as a whole.

Figure 1: Limitations with online learning environments.

Source: Adapted from [1]

This has been an obvious issue since march 2020 to present (September 2020) and there haven't
been many major ways this issue has attempted to be mitigated. Our virtual reality learning
environment could help not only students but teachers as well. Creating an affordable learning
environment through monitoring different aspects of brain signals can help identify what help is
really needed for every individual. Overall, many studies such as the one shown in figure 1,
identify a multitude of issues with online learning and this project is a great opportunity to help
identify and solve these issues.

58

Identification of need

In this project, our VR environment would need to help monitor the different aspects of learning
in an educational environment such as attention span, stress, and other variables through an
EEG. Through this data our VR environment would need to provide feedback to the user in order
to help each individual with specific issues. This would need to be a low cost solution so it can
be accessed by multiple students/teachers.

Market/Application

This product can directly be used by learning institutions specifically for students and teachers
who need it. A prevalent problem in the education system amidst a pandemic is the lack of a
personalized digital educational experience. A tool to assist learning retention in online
education environments via an extended reality platform that is low-cost and accessible for those
underrepresented in educational environments and for educators to monitor the effectiveness of
their lessons as the goal of the project is to monitor brain signals.

59

Approach
Problem analysis:

The main problems that this project intends to address are issues associated with learning outside
of the classroom during the COVID-19 pandemic. Evaluating this solution revolves around
several aspects. The first aspect is the safety of students from the pandemic. One of the main
purposes of this project is to make distance learning more efficient in order to maintain safety.
Assuming that students will obtain access to this hardware through the school, similarly to
borrowing a laptop, there are a few safety precautions that need to be considered. Proper
precautions such as social distancing, the wearing of masks, and consistent sanitation of areas
should be taken when obtaining the hardware. Doing this should preserve the safety of the
students and faculty and provide a very safe way to enhance their distance learning experience.

The second issue that needs to be addressed in this project is the implementation of the virtual
environment. This environment needs to be intellectually stimulating and provide accurate
information that the student can learn from. Many classes such as STEM and medical courses
will be ideal subjects for implementation of this project. In order to properly implement a
functioning module in a particular subject, the information from the module must be properly
researched. These modules can also be made to go along with specific lessons, allowing them to
be a supplemental teaching aid to what is discussed in the class meeting.

The third issue that needs to be addressed is the comfortability of the student. This is extremely
important if the student will be using the virtual environment for an extended period of time. The
proposed solution revolves around modeling a VR headset that fits well with the EMOTIV
EPOC+, the brainwave monitoring headset we will be using. 3D modeling a custom headset
allows the design to have maximum comfortability. The first issue that is addressed is the
orientation of the headset of the student. The headset will be designed to work similarly to other
popular VR headsets. The implementation of proper padding and adjustable head straps will
allow the user to have the most comfortable experience. The VR headset also needs to allow the
EPOC+ to sit in the proper place on the students head. This is the reason for the creation of the
custom headset. Modeling the VR headset with the EPOC+ in mind allows for both to fit
properly.

The last issue that needs to be addressed in this project is ensuring the usability of the data
obtained from the EPOC+. The brain signals obtained would be difficult to interpret for someone
who does not fully understand each of the readings. However, this project will have a central hub
for the teachers to monitor students to see their concentration and understanding of the
information currently being presented. In order to do this properly, we must find a way to
extrapolate the data and make it easily readable for people who don’t fully understand brain
waves.

60

Approach:

When approaching the solution for building a virtual reality learning environment monitored by
brain signals, there are many things that need to be considered. The first thing that needs to be
considered is the environment itself. The learning environment needs to be able to hold the
attention of the student. A big advantage to using virtual reality is that it cuts out distractions.
When wearing a VR headset, the student will be submerged in the virtual environment. This
helps mitigate distractions not normally present in a normal classroom. Another important factor
to consider in this design is the creation of interesting and relevant modules. These modules can
be tailored to fit the needs of specific subjects. Some potential applications could be its use in
STEM classes, science labs, and medical applications. A major benefit to using virtual reality for
teaching is that it can provide a hands-on experience. Knowing that all students learn in different
ways, this can address the problem that many students face when learning outside of the
classroom. The creation of a stimulating virtual environment with relevant course material will
provide a deeper learning experience to students who are forced to learn in an at home setting.

The second problem that our solution addressed is the methods used to obtain brain signals from
students. For this project design, the EMOTIV EPOC+ will be used. While using this headset to
monitor brainwaves, different factors in a student’s physiological state can be obtained. Among
the many things that can be monitored, a student’s concentration and relaxation levels can serve
as an indication for their real-time experience while doing a module. This can show which

61

students are most interested in a topic, as well as the students who are struggling. The second
issue that our solution addresses is the use of this information. Unless experienced with brain
waves, most teachers will not be able to determine brain state from the signals alone. Using the
EPOC+, the brain signals can be exported from each student. The monitored patterns will be
displayed in an easily readable format through a central location provided for the teachers. This
will allow for the teacher to monitor how engaged a student is in real time. Lastly, the modules
are designed to give the students lessons of many durations. This means that the hardware for
this design must be comfortable for a student to wear for extended periods of time. The creation
of a VR headset that works in accordance with the EPOC+ will be important for addressing this.
A custom design will allow for maximum comfort when using both the EPOC+ and the VR
headset in conjunction. This custom headset will also allow for every contact point of the
EPOC+ to sit in the correct location on the students head for proper brain wave monitoring.
Implementing all of these factors will allow for the student to get the most from their learning
experience in an at-home learning environment.

Alternative Approach:

Due to the nature of this project, there are several possible issues that may arise when attempting
to implement this solution. The first potential issue revolves around the creation of the virtual
reality headset. Our senior design team has limited experience with 3D modeling. To fully utilize
the created virtual environment, a functioning headset is necessary. The consumer market is
filled with many virtual reality headsets that are optimized to create the best virtual experience. If
the group cannot create a functioning model, we plan to use the Oculus headset. Switching to the
approach would cause a significant increase in price, but would provide an ideal experience for
using the created modules.

Another major issue that surfaces when implementing our solution is the placements of the VR
headset and EMOTIV EPOC+. When using the EPOC+, it is crucial that the placements of the
sensors fall in the correct location. As shown in Figure 2 below, the location of the sensors fall in
the same space that the VR headset is positioned on the head. If both pieces cannot be positioned
correctly, this would compromise either comfort of the VR headset or accuracy of the EPOC+.
Also, the EPOC+ covers a large area of the head, potentially leading to difficulties surrounding
its use. As a backup, we have intentions on using the MUSE headset to brain wave monitoring.
This headset is positioned exclusively on the forehead, allowing for easier use of the two items
conjointly. Modeling a VR headset around a headband is also an easier task than modeling one
around a whole head covering. The MUSE is our alternative approach because it contains less
sensors than the EPOC+, meaning that less data about physiological state can be obtained from
it.

62

Figure 2: Placement of EPOC+
Adapted from [3]

The last potential issue doesn’t pose as big of a problem but it still needs to be considered. For
this project we intend to use an LCD screen to display the virtual environment. Implementing a
screen into a VR headset would require a design for a larger housing. This would also require an
HDMI cord to run into the headset. This was our primary idea for the headset because it allows
the code to be written as a computer application instead of a mobile app. If using the LCD is not
practical, using a phone for the display in the headset is our alternative plan. This would require
mobile app development for the modules. This could be problematic because our team has
limited experience in this area. Switching to this alternative approach would require more time to
produce a finalized product, but the functionality should remain the same

Intro to Background Knowledge:

When attempting to understand readings from EEG, it is essential to understand the different
types of brainwaves that readings are obtained from. Distinctions between different categories of
brain waves lie in their variation in frequency. Different brain wave categories are responsible for
different brain functions. When using EEG, the primary wave types that are measured consist of
Beta, Alpha, Theta and Delta [5]. Beta waves, typically ranging from 12 to 38 hertz, “dominate
our normal waking state of consciousness when attention is directed towards cognitive tasks and
the outside world” [4]. These types of waves are ideal for studying brain function, making them
an ideal method to determine brain state during our designed modules. Alpha waves generally
signal thoughts, aiding in, “ mental coordination, calmness, alertness, mind/body integration and
learning” [4]. Alpha waves will also be very important when monitoring the physiological state
of a student. Tracking these waves provides a good indication of active thought process and
potentially attention span. Theta waves act as a gateway to cognition, demonstrating when the

63

user is in the process of falling asleep or waking up [4]. Delta waves are generally only present
when in a state of deep sleep. These two types of waves probably will not be as useful for
application in this lab. Figure 3 below provides differences in frequency and potential uses for
each of the brainwave categories. It should be noted that this chart includes Gamma waves. The
EPOC+ has the potential to read gamma waves, but being the highest frequency waves, it may be
harder to interpret them. Understanding the distinction between brave wave types and
frequencies will allow for a better understanding of the information gathered from the EPOC+.

Figure 3: Brain Wave Samples Usable to Determine Concentration
Adapted from [2]

64

Project Requirements Specification:

Mission Requirements
- We will use the Emotiv headband to collect brain signal data as inputs for an educational

virtual reality environment.

Input/Output Requirements
- The Emotiv shall output brain signal data packets.
- The computer shall accept an input from a user through brain signal data via data

exported.
- The computer shall provide power to the VR headset and its components.
- The computer will use the data and output the results into the VR environment.
- The computer shall accept an input from the user through the VR controllers.
- VR controllers will receive power from 2-4 1.5V AA batteries.

Functional Requirements
- The Emotiv will record brain signals at a rate of 128 samples per second.
- The Emotiv shall send data over to the computer with no packet loss.
- The software will detect variations in brain signals while interacting with a virtual reality

environment.
- The program will be written efficiently to prevent data loss and reduce latency.

Technology and System-Wide Requirements
- A dedicated series graphics card with HDMI output ports.
- two USB 2.0 ports (at least one them is powered)
- Bluetooth will be required for use of Emotiv and controllers.
- Windows 7 or higher operating system
- Our VR headset will be cost efficient as possible to fit the needs of affordability for

students.
- Controllers will use an accelerometer with I2C interface to help locate placement of the

user in game.
- Hardware will be simplified and straightforward for easy integration with software.

65

Preliminary Design

Functional decomposition

66

System Architecture

- Physical Architecture:

Component selection

● Component 1 - Epoc +
○ The Epoc + is a mobile EEG testing headset that will allow us to track brain

signals that we will use as inputs to our design.
○ Provided to us by Nathalia Peixoto. The Epoc + has been discontinued and

replaced with a newer version, the Epoc X, which is $849. This version will be
compatible with our design as well.

○ Allows for 12 hours of battery life tracking 14 different channels of brain signals.
○ Link - https://www.emotiv.com/epoc/

● Component 2 - VR Controller
○ We will make our own controllers for arm movement tracking and button

selection. This will serve as inputs to our design.
○ The controllers will have accelerometers, buttons, pcb design, batteries, and a

cover to hold everything. In total, it will cost around $15 to make each controller.

https://www.emotiv.com/epoc/

67

○ Alternatively, if it becomes too inefficient to create our own, we will use
controllers that come with a commercial VR headset.

● Component 3 - Epoc Software
○ Emotiv created commercial software to bundle with their EEG testing headset.

We will be buying their student version of the software.
○ The software will include real time playback, import/ export, converting to

recordings, and the raw EEG API software. We chose the student version for the
raw EEG API software, as it allows for us to connect our data and our virtual
environment design together.

○ The software is billed monthly at the cost of $29.
○ Link - https://www.emotiv.com/emotivpro/
○ Alternatively, we will be using the lite version and grab the data ourselves through

our own software incorporated into the lite version.
● Component 4 - Computer

○ A computer is required to run the software for the game and for the Epoc
software. This will be, at first, through the use of personal computers from our
group members.

○ Alternatively, we will be going to one of the school’s lab computers to work on
our design.

● Component 5 - VR Headset
○ We will be buying the commercial Oculus Virtual Reality headset. This will allow

for us to view our design.
○ Alternatively, we will create our own headset through a combination of LCD

screens and accelerometers to track head movement.

https://www.emotiv.com/emotivpro/

68

System Architecture diagram

69

Preliminary Experimentation Plan
Selection of requirements for experimental validation:

1. Requires use of EPOC+ sampling at a rate of 128 samples per second.
2. Software has a success rate in processing data at least 95 percent of the time.
3. Accelerometers are always calibrated correctly with a recalibration method.
4. Hardware has no shorts and is functioning correctly.
5. EPOC+ signals are able to be read and exchanged with the software with minimal amount

of latency.
6. Brain signals are able to interact with the game and are reflected through a heads up

display or action within the gameplay.

Experiment 1 - Collecting Brain Signal Data and Data Transfer, along with getting the virtual
environment set up.

In this experiment, we plan to collect electroencephalogram (EEG) brain waves from our
Emotiv device and transfer the data to our software. While conducting these experiments we will
test what brain waves are associated with playing certain kinds of educational games and being
in different scenarios and see and document changes in brain waves associated with those
changes. After documenting different changes associated with different brain signals, we will
introduce real time extraction of the data into the transfer of signals. This will allow us to
incorporate conditional statements within our code to help the signals interact with the virtual
reality environment. We will also be testing to see if our basic configuration of a virtual
environment simulates correctly. This environment will have little to no inputs connected and has
a main purpose of checking if it displays.

Experiment 2 - Testing how VR software interacts with brain signal data

Experiment 2 has a goal of transferring the brain signal data at real time to the virtual reality
environment. This will be a test of if the signals are strong enough to be detected and if the
conditional statements are being enacted. We will go about this by setting up a simple
environment with 14 different conditional statements, one for each of the EEG nodes, and have
the user try to interact with any of those statements. The goal will be to utilize all 14 conditional
statements in one way or another. This will aslo test if our game is structured and running
properly.

70

Experiment 3 - Hardware/Structural Verification/Testing

Within experiment 3, this is where we would test our hardwares performance to make sure the
system works properly in conjunction with our software. Part one would be our hardware
verification tests. In which, we would be testing hardware under conditions simulating expected
real-life conditions, including storage, transportation, operation and maintenance environments.
Secondly for this experiment we would test the hardware. We would begin by developing a set of
test criteria while applying functional tests to determine whether the test criteria have been met,
then applying qualitative assessments to determine whether the test criteria have been met.
Lastly, we would find any weaknesses with our hardware and create a way to fix/contain the
problems post experiment.

71

Preliminary Project Plan

List of Tasks for 493

1. 3D designing and printing our VR headset housing.
2. Begin fabrication and assembly of hardware.
3. Begin writing software for our VR game.
4. Start experimenting with collection of brain signals and draw conclusions from those

tests.
5. Request access and get familiar with Emotivpro software (student version).

➔ These tasks will be completed in parallel.
6. Begin testing Hardware
7. Begin testing Software.
8. Test hardware/software compatibility.

Allocation of Responsibility

Tasks:

3D designing printing our VR headset housing - Ethan

Begin fabrication and assembly of hardware - Yumna

Begin writing software for our VR game - Jacob

Start experimenting with collection of brain signals and draw conclusions from those tests
- Brendan

Request access and get familiar with Emotivpro software (student version) - Zayne

Begin testing Hardware - Brendan / Yumna / Ethan

Begin testing Software - Jacob / Zayne / Ethan

Test hardware/software compatibility - Whole Team

72

Potential Problems -
Risk Analysis & Knowledge

Project Objective Risk Description Effect Risk
Severity

Risk
Likelihood

Risk Response Strategy

Financial Cost Underestimation of
budget - insufficient to
carry out designing tasks

Deterioration of
project quality

Medium 0-4% Limit scope of design to a
necessary, manageable,
minimum

Skills
& Information

Unavailability of core
skills affecting designing
& building processes.
Unavailability of
information & lack of
understanding of new
software required,
including access to open
source software &
expertise

Delays & errors in
design &
implementation -
verification
increases cost &
time due to
developments of
revisions

Low 50-90% Team strengthens skills by
consulting with experts &
transparency about skills
needed to be learnt.
Information required is
obtained in advance of
requirement

Durability &
Compatibility

Problems due to the lack
of foresight in the
durability of 3D
constructed products as
well as the compatibility
with other materials and
software

Deterioration of
quality. Delays &
errors. Increases in
costs if materials
aren’t durable or
compatible.

High 30-60% Various phases of testing &
troubleshooting for
compatibility of hardware &
software in a timely manner
as a project priority.
Important tools &
components are stored
securely.

Opinions &
Permission

Delays in obtaining
opinions & permissions
from faculty advisors
regarding scope of the
project, completion of
tasks and access to
resources

Disturbed project
process &
suspension of work

Medium 30-60% Ordering & reserving
resources. Alternatives are
considered ahead of time.
Earlier diagnosis of the
situations is handled in
meetings preceding
communication with
advisors.

73

Internal
Conflicts

Conflicts amongst
members due to
insufficient information &
communication.

Delays &
disruption in
completion

High 0-4% Response of all team
members to communicate &
mediate conflicts in the team

Completion Unrealistic goals &
deadlines

Deterioration of
design quality &
failure to meet
deadlines

High 0-4% Response of all team
members to prioritize
completing goals ahead of
deadlines. Meetings
preceding deadlines to
review progress.

74

Bibliography

[1] K. Mukhtar et al, "Advantages, Limitations and Recommendations for online learning during
sss COVID-19 pandemic era," Pakistan Journal of Medical Sciences Quarterly, vol. 36, 2020.

[2] Priyanka A.Abhang, Bharti W.Gawali, Suresh C.Mehrotra, “Technological Basics of EEG
sss Recording and Operation of Apparatus,” Dr. Babasaheb Ambedkar, Aurangabad, India, 2016,
sss ch. 2, pp. 19-50. https://doi.org/10.1016/B978-0-12-804490-2.00002-6

[3] Z. Scavotto, N. Peixoto, “Video Games and Brain Wave Frequencies,” 2020. [Online]. sss sss
sss Available: http://gamingwaves.onmason.com/

[4] Brainworks, “What Are Brain Waves?,” 2020. [Online] Available:
sssshttps://brainworksneurotherapy.com/what-are-brainwaves

[5] Emotiv, “How Does an EEG Work?,” 2020. [Online] https://www.emotiv.com/eeg-guide/

[6]

https://doi.org/10.1016/B978-0-12-804490-2.00002-6
http://gamingwaves.onmason.com/
https://brainworksneurotherapy.com/what-are-brainwaves
https://www.emotiv.com/eeg-guide/

75

Appendix B: Design Document (ECE-492):

Final Design Document

VR Learning Environment with Real Time Brain Signal
Monitoring

Brendan Jenkins, Ethan Li, Jacob Mitchell. Yumna Rizvi, Zayne Frabutt

FS: Nathalia Piexoto

CC: Peter Pachowiz

ECE 493-001

April 30th, 2021

76

Problem Statement
Introduction/Motivation

During the COVID -19 pandemic, learning can be extremely difficult due to the situation it puts
students and teachers in. With most schools and universities transitioning to virtual learning, it
can be especially tough for those students who benefit the most from in-person teachings. As
this has been a pressing issue over the past seven months, the issue needs a solution to help both
students and teachers in this situation. Most students learn in different ways and most can't focus
in these virtual learning environments as external factors can take over that would otherwise not
be there in a classroom environment. This creates major limitations in virtual learning
environments. Shown in figure 1, is a study which teachers and students identified the limitations
of virtual learning as a whole.

Figure 1: Limitations with online learning environments.

Source: Adapted from [1]

This has been an obvious issue since march 2020 to present (September 2020) and there haven't
been many major ways this issue has attempted to be mitigated. Our virtual reality learning
environment could help not only students but teachers as well. Creating an affordable learning
environment through monitoring different aspects of brain signals can help identify what help is
really needed for every individual. Overall, many studies such as the one shown in figure 1,
identify a multitude of issues with online learning and this project is a great opportunity to help
identify and solve these issues.

77

Identification of need

In this project, our VR environment would need to help monitor the different aspects of learning
in an educational environment such as attention span, stress, and other variables through an
EEG. Through this data our VR environment would need to provide feedback to the user in order
to help each individual with specific issues. This would need to be a low cost solution so it can
be accessed by multiple students/teachers.

Market/Application

This product can directly be used by learning institutions specifically for students and teachers
who need it. A prevalent problem in the education system amidst a pandemic is the lack of a
personalized digital educational experience. A tool to assist learning retention in online
education environments via an extended reality platform that is low-cost and accessible for those
underrepresented in educational environments and for educators to monitor the effectiveness of
their lessons as the goal of the project is to monitor brain signals.

78

Project Requirements Specification
Mission Requirements

- We will use the Emotiv headband to collect brain signal data as inputs for an educational
virtual reality environment.

Input/Output Requirements
- The Emotiv shall output brain signal data packets.
- The computer shall accept an input from a user through brain signal data via data

exported.
- The computer shall provide power to the VR headset and its components.
- The computer will use the data and output the results into the VR environment.
- The computer shall accept an input from the user through the VR controllers.
- VR controllers will receive power from a 5V micro-usb input.

Functional Requirements
- The Emotiv will record brain signals at a rate of 128 samples per second.
- The Emotiv shall send data over to the computer with no packet loss.
- The software will detect variations in brain signals while interacting with a virtual reality

environment.
- The program will be written efficiently to prevent data loss and reduce latency.

Technology and System-Wide Requirements
- A dedicated series graphics card with HDMI output ports.
- two USB 2.0 ports (at least one them is powered)
- Bluetooth will be required for use of Emotiv and controllers for data transmission.
- Windows 7 or higher operating system.
- Our VR headset will be cost efficient as possible to fit the needs of affordability for

students.
- Controllers will use an accelerometer with I2C interface to help locate placement of the

user in game.
- Hardware will be simplified and straightforward for easy integration with software.

79

System Design/Architecture
Functional decomposition

Level-0 System Decomposition

Level-1 System Decomposition

80

Level-2 System Decomposition

❖ Breakdown Of Functions A & B (EPOC+ & Motion Controllers)

❖ Breakdown Of Functions C, D, & E (Processing of Data)

81

❖ Breakdown Of Functions F (Game Engine)

❖ Breakdown Of Output

82

System Architecture

Physical Architecture
❖ This Figure shows a breakdown of Architecture the physical architecture of our three

main components and their associated components.

83

System Architecture diagram

❖ This Figure shows a combined process from both our decomposition and physical
architecture to show the process of how each of these components work.

84

Background Knowledge/Phenomenology
❖ Accelerometer as a 3D positioning mechanism

Accelerometers are sensitive to both linear acceleration and the local gravitational field.
Changes in orientation are described by rotations in roll φ, pitch θ and yaw ψ about the x,
y and z axes respectively

Equations to calculate pitch (y-axis), roll (x-axis), and yaw (z-axis) angles:

Figure: Eq. for Pitch
Source: Adapted from [9]

Figure: Eq. for Roll
Source: Adapted from [9]

Where Gpx, Gpy, and Gpz are raw data outputs are read from the accelerometer that must be
scaled to an interpretable value. The arctangent is taken on the right side of the equation
to help get angle values.

Angle calculations were used in our code to help with angle positioning. Show below is a
snippet of our code used with these equations:

float yAngle = atan(ay / (sqrt((ax*ax) + (az*az))))*180/M_PI;
float zAngle = atan(sqrt((ax*ax) + (ay*ay)) / az)*180/M_PI;
float xAngle = atan(ax / (sqrt((ay*ay) + (az*az))))*180/M_PI;

85

❖ EEG for sampling of Brain Signals

An EEG picks up the electric potential differences, on the order of tens of μV. The
potentials measured, therefore, reflect neuronal activity and can be used to study a wide
array of brain processes [3]. To collect EEG data, electrodes are placed on the scalp and
wet with conducting liquid to facilitate the measurement of the electrical activity using
scalp electrodes [10].

Event-related potentials (ERPs) are electrical potentials in the brain in response to
specific events. While the EEG records ongoing signals from the electrodes in the
EPOC+, different types of events are presented for the brain to respond to; for example,
written or spoken words, letters, pictures, or sounds. By measuring the brain’s response to
these different kinds of events, conclusions can be drawn about how the brain processes
different types of information [7].

The table below shows the brain waves the EPOC+ measures. They are classified as
gamma, beta, alpha, theta, and delta, each measured at different frequencies [3]. These
different brain wave categories are responsible for different brain functions. Applications
and monitoring of these allow unbiased measures of, for instance, an individual's level of
fatigue, mental workload, mood, or emotions. Beta waves, typically ranging from 12 to
38 hertz [4]. These types of waves are ideal for studying brain function, making them an
ideal method to determine brain state during our designed modules. Alpha waves
generally signal thoughts, aiding in, “ mental coordination, calmness, alertness,
mind/body integration and learning” [4]. Alpha waves will also be very important when
monitoring the physiological state of a student. Tracking these waves provides a good
indication of the active thought process and potential attention span. Theta waves act as a
gateway to cognition, demonstrating when the user is in the process of falling asleep or
waking up [4].

Table showing characteristic of basic brain waves
Source: Adapted from [4]

86

The EPOC+ headset includes 14 sensors and 2 ground reference points to which the
voltage of all other sensors are compared. The 14 scalp sensors (channels) are high-pass
filtered with a 0.16 Hz cut-off, pre-amplified, and low-pass filtered at an 83 Hz cut-off.
The analog signals are then digitized at 2048 Hz. The digitized signal is filtered using a
5th-order sinc notch filter (50–60 Hz), low-pass filtered, and down-sampled to 128 Hz.
The effective bandwidth measured is 0.16–43 Hz. [2]

Even though the EEG is a critical tool to this project, it is still important to acknowledge
that it suffers from a few limitations that hinder its effective analysis and processing. An
EEG has a low signal-to-noise ratio (SNR). The brain activity measured can be often
buried under multiple sources of environmental, physiological, and activity-specific noise
of similar or greater amplitudes. The EPOC+ uses various filtering and noise reduction
techniques to minimize the impact of these noise sources and extract true brain activity
from the recorded signals [10].

A problem that may be encountered is that the EEG is a non-stationary signal, and its
statistics vary across time. As a result, a characteristic trained on a temporally-limited
amount of user data might generalize poorly to data recorded at a different time on the
same individual. This is important for instances where the EGG is working with limited
amounts of data [10].

87

Detailed Design

Data Flow Diagram

The data flow diagram above depicts how the data will move and be analyzed throughout our
project. The EPOC+ will gather brain signal data and input it into a program that will analyze the
data and allow us to use the data to modify how the module progresses. While this happens, the
user will also be using the controller. The data extracted from the controller will then be
interpreted by a different program that will allow the user to move within the virtual
environment. These two things together will then be analyzed by the game engine to provide an
interface with the pi zero using GPIO pins 17 and 27.

Software Structure

88

As Hardware, we have the Epoc+ sensors, accelerometer controllers, and the virtual reality
headset. To bridge them to software, we have the controller calibration module, display module,
and brain signal analysis module. All of these will lead into our control layer, the unity game
engine.

Prototyping progress report

89

Task #1) Controller Modeling (Option #2)

● Objective: Create a CAD model for a 3D controller

3D Model: Wiring Schematic:

● Controller Information:
○ Two Buttons

■ Action
■ Settings Menu

○ Raspberry Pi Zero
■ Sized to fit within the casing
■ Ability to communicate with the Unity environment via Bluetooth

○ ADXL345
■ Maps information on x, y, and z planes

○ Dimensions: 105x45x22 mm
● Conclusion:

○ A model for a controller can be designed to fit within a single-handed controller
given the components are small enough

○ A controller design can be created simple enough for use by anyone
■ This still requires calibration and mapping of the ADXL

○ A single cord can connect the controller to the computer due to the capabilities of
the Raspberry Pi Zero

○ Mounting the accelerometer in a centralized location of the controller will allow
for the most accurate tilt measurement

Task #2) Mapping the ADXL345

● Objective: Create a program that can interpret accelerometer data

90

○ Getting uniform values from the accelerometer (defined range)
○ Calibration of the sensor to understand tilt behavioral curve

● Terminal Output:
○ Stores values for x, y, and z plane

■ X and Y display values from -2 to 2
■ Z displays values from 0 to 4

○ Communication with the accelerometer follows I2C protocol

Output Readings from Created Program

● Conclusion:
○ Understanding the values from the program is important, but it will be necessary

to calibrate the sensor to better understand the angle vs program output
○ After calibration of the sensor, this information should be able to map

accelerometer movement in our environment
○ It may only be necessary to calculate the values of X and Y, as determining depth

into the environment may not be necessary for implementation

Task #3) Leap Motion Experimentation (Option #1)

● Objective: Understand capabilities of Leap Motion

91

○ Determine possible benefits to using over the controller
○ Determine the capabilities for hand recognition from different angles

● Leap Motion Viewpoint on Table:

● Leap Motion Head Mounted

● Conclusions
○ Module in unity that allows for Leap Motion interaction with created environment

■ Still need to do testing with this to see capabilities inside the created
environment

○ Leap Motions adaptability allows for diverse possibilities for implementation in
our design

○ The software maps each hand by joint. This allows for hands shapes to be
determined through mapping and multiple contract points when being used for
interacting with objects.

Task #4) Creation of Headset 3D Model

92

● Objective: Create a 3D model for a headset that will allow for use without interfering
with EMOTIV EPOC+ sensor placement

○ Look into the possibility of mounting Leap Motion on front of the headset
● Current Design:

○ Design Components:
■ Main Housing
■ Front Panels
■ Lens Holders
■ LCD Clip

Prototype for 3D Model of Headset

● Conclusions:
○ Although the group is limited with experience regarding 3D headset modelling,

this seems well within the range of our capabilities
○ The casing was never the issue with sensor placement, but the custom design

allows for implementation with leap motion if that route is chosen
○ The biggest issues with the VR headset interfering with EPOC+ sensor placement

stem from the parts of the headset that aren’t 3D modeled.
■ This includes the straps that will need to sit on the head. These straps

cannot take up a lot of space, but they still need to be strong enough to
keep the headset stable.

○ Designing/Finding lenses that fit with a custom model may be difficult.

Task #5) Creation of Unity Virtual Environment

93

● Objective: Familiarize ourselves with the capabilities of Unity Development Software
● Test Design:

○ Implemented the basics of unity design for modelled of a classroom environment
○ Used lighting sources to provide ample experience in scene and game view
○ Implemented prefabs for classroom items

■ Several possibilities for use of prefabs
■ Custom objects can also be created as desired

Scene View: Game View:

● Conclusions:
○ Using different scenes allows us to create multiple modules for interactive

learning
○ This design for the classroom has capabilities as a main menu

■ Using a text mesh can create a dialogue on the chalkboard that can be used
to select modules

○ Environment design is relatively straight forward. The creation of custom objects
and displaying proper lighting conditions provide the biggest issues with
development

○ Leap Motion POV allows for easy implementation with Leap Motion software.
The camera angle shown in the game view above will be loaded with a virtual set
of hands mapped to the Leap Motion.

Task #6) Epoc+ Testing and Data Gathering with Emotivepro

94

● Objective: Obtain brain signal data while conducting various tasks
○ Understand how to position EMOTIV EPOC+ sensors
○ Familiarize ourselves with the capabilities of EMOTIV software

■ Experiment with extracting raw data
● Testing:

○ Playing a game
■ Provides example wave patterns for a relaxed and concentrated state of

mind
○ Reading/Solving Math Problems

■ Provides example wave patterns for concentration and potential stress
○ Reading with Distractions

■ Provides example wave patterns for losing concentration when focussing
on a task

AF3 and AF4 Sensors vs Time. Taken while playing a game.

● Emotive Pro Software:
○ Gives access to numerical data instead of only graphical data
○ Can give data from every sensor at one time

■ Allows for calculations of average and standard deviation of signals over
the duration of the scan.

95

Brain Signal Waveforms from Every Sensor

Corresponding Waveform Numerical Data from Test Above

● Conclusions:
○ The sensorthe is very specific and requires a good amount of saline solution for

proper connections
○ Software allows viewing of all channels at once. It also allows viewing of

individual channels for specific sensor monitoring
○ Having pictures of the brainwave graphs can be useful for monitoring from an

outside perspective. However, the numerical data will be the most useful for
implementation in learning module software.

96

Testing plan
● Test #1 (Get Brainwave Information from EMOTIV EPOC+)

○ Goal: Understand sensor placement and brain wave patterns from different
stimuli

○ System Components: EMOTIV EPOC+, EMOTIV PRO software
○ Testing Process:

■ Configure the EPOC+ with sensor placements in the correct place. The
proper placement is demonstrated through green indication in EMOTIV
software.

■ Performance of tasks related to situations students will be subjected to
when using our software

■ Data collection from EPOC+ in real-time alongside screen recording of
the desired task

○ Data Processing and Visualization: Raw data will be displayed in graphical and
numerical forms. This allows for the calculation of wave amplitudes at specific
points in the video. Also, graphical representation allows for demonstration of
patterns.

○ Evaluation: Focus on graph characteristics that show differences from steady state
wave patterns, as well as differences in patterns in unique tasks.

● Test #2 (Evaluation of Controller Capabilities):
○ Goal: Understand how our created controller can be used to interact with a virtual

environment.
○ System Components: Raspberry Pi, ADXL345, Push Buttons
○ Testing Process:

■ Push-button activated at different times. Observe response from Raspberry
Pi.

■ Create a program that takes accelerometer data and stores it into
Raspberry Pi registers

■ Map obtained data into a designated range
○ Data Processing and Visualization: Data will be observed within the terminal. A

button press should show the programmed response on screen, while the ADXL
should output mapped positional data at a The software designated frequency.

○ Evaluation: The main focus for this testing is understanding the ADXL data.
Calibrating values to degrees of tilt will allow for a cursor to be moved across the
screen.

○ Note: With this information, a cursor can be moved at one set speed when the
threshold value of the accelerometer passes a specific mapped value. Cursor
acceleration can also be implemented using different angular ranges

97

● Test #3 (Understand Capabilities of Leap Motion Controller)
○ Goal: Understand capabilities of Leap Motion
○ System Components: Leap Motion, PC, Leap Motion compatible software
○ Testing Process:

■ Play premade games to understand the ability to distinguish premade hand
signals

■ Enter premade environments to understand virtual hand collision box
○ Data Collection: No numerical data is obtained from this test. This experiment

allows us to understand which controller may be best suited for interaction with
the virtual environment

○ Evaluation:
■ Focus on mapping of joints that Leap Motion provides
■ Understand which hand signals can be used. This can allow for item

selection and options menu to be mapped for specific hand shapes
■ Interaction with the virtual environment allows the user to understand the

capability of Leap Motion. When creating our program, we can model
human interactions based on this information,

● Test #4 (Understand Capabilities of Unity Software)
○ Goal: Have group members learn the basics of Unity and understand possibilities

for environment creation with this software
○ System Components: PC, Unity Software
○ Testing Process:

■ Create a closed classroom setting. Requires implementation of shape
creation and custom lighting

■ Model preset shapes into items. Save shapes as prefabs for use across the
entire project

● Experimentation with texture creation to add color and features to
created shapes

■ Implementation of prefabs created by other users. Learn to implement
premade objects into the environment

■ Implement object motion and Unity physics
○ Evaluation: Upon completion of this experiment, the user should understand the

basics of scene creation in Unity
○ Note: Understanding the capabilities of Unity will allow for realistic expectations

when creating classroom models. Understanding and learning software at this
point in the project will allow for efficient environment creation when
implementing our learning modules.

98

● Test 5 (Implementation of Controller and Environment Together)
○ Goal: Allow for our chosen controller option to interact with a created unity

environment
○ System Components: Leap Motion, Custom Controller, Unity, PC
○ Testing Process:

■ Connect the controller into the virtual environment
■ Use controller to interact with different items and trigger in-game events
■ Open settings menu at any point during environmental interaction

○ Evaluation: The controller should be able to control every aspect within the
virtual environment. This should allow for the user to complete the module with
no inputs besides the controller.

99

Appendix C: Software printout
I. Matlab

For quaternions:
%%ECE-493-001
%VR learning environment with real time brain signal monitoring
clear
opengl software
quat = importdata('quterniondata2.xlsx'); %insert filename of data
q0 = quat.data(:,1); % grabbing column vectors for quternion data
q1 = quat.data(:,2); %column 2
q2 = quat.data(:,3); %column 3
q3 = quat.data(:,4); %column 3
q = [q0 q1 q2 q3];
%creating time vector
T = 1/64;
t = (0:810-1)*T; %creates time vector based off of EPOC+ sampling rate
% yaw, pitch, roll angle Vector
[yaw, pitch, roll] = quat2angle([q0 q1 q2 q3]);%converts quaternion data to yaw pitch and roll
yawangle = (180/pi)*yaw;
pitchangle = (180/pi)*pitch;
rollangle = (180/pi)*roll;
% Rotation angle Vector
eul = quat2eul([q0 q1 q2 q3]);
XAngle = eul(:,1)*(180/pi);
YAngle = eul(:,2)*(180/pi);
ZAngle = eul(:,3)*(180/pi);
plotting data
figure;
plot(t,rollangle, t, pitchangle, t, yawangle);
title('Quaternion Angles Overtime');
xlabel('time(seconds)');
ylabel('Angle(degrees)');
legend('Roll Angle', 'Pitch Angle', 'Yaw Angle');
angles = [XAngle'; YAngle'; ZAngle'];%data
for ii=1:1261
quiver3(0,0,0,angles(1,ii),angles(2,ii),angles(3,ii)) %plot arrow
axis([-180 180 -90 90 -180 180]) %just for convenience
pause(.1)
End

For performance metrics:
clear
opengl software
pm = importdata('performace metric.csv'); %insert filename of data
engage = pm.data(:,1)*100; % grabbing column vectors for pm data
excite= pm.data(:,2)*100; %column 2
stress = pm.data(:,3)*100; %column 3
relax = pm.data(:,4)*100; %column 4
interest = pm.data(:,5)*100; %column 5
focus= pm.data(:,6)*100; %column 6
T = 1/0.1;
t = (0:17-1)*T;
figure;
plot(t, engage, t, excite, t, stress, t, relax,t, interest, t, focus);
title('Performance Metrics overtime');
xlabel('time(seconds)');
ylabel('Metric');
legend('Engagement', 'Excitement', 'Stress', 'Relaxation','Interest','Focus');

100

II. Unity

Jumping Between Unity Scenes:

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.UI;
using UnityEngine.SceneManagement;
using VivoxUnity;
using MLAPI;
using MLAPI.Transports.UNET;

public class jumpScene : MonoBehaviour
{

public void LoadScene(string sceneName)
{

NetworkManager.Singleton.StartClient();
SceneManager.LoadScene(sceneName);

}

public void LoadSceneNoNet(string sceneName)
{

SceneManager.LoadScene(sceneName);
}

}

GameManager.cs:

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.SceneManagement; //Added for jumping between scenes to
test static variables
using UnityEngine.UI; //Used for invoke

public class gameManager : MonoBehaviour
{

// Start is called before the first frame update
private string equation;
public int num1, num2, operation; //Public to allow switching from

teacher hub

101

public int startOp, endOp, teacherControl;
private int curCount, box, answer; //No modification
private char[] op = new char[2] { '+', '-' };
static public int completed = 0;
static public int correct = 0;

public enum Scene
{

Equation_Saber,

}

void Start()
{

operation = Random.Range(0, 2);

if (operation == 0) //Addition
{

num1 = Random.Range(1, 10);
num2 = Random.Range(1, 10);
answer = num1 + num2;

}
else if (operation == 1)
{

num1 = Random.Range(11, 20);
num2 = Random.Range(1, 11);
answer = num1 - num2;

}

curCount = 0;

equation = num1.ToString() + " " + op[operation] + " " +
num2.ToString() + " = __.";

}

// Update is called once per frame
void Update()
{

if (curCount < answer)
{

102

equation = num1.ToString() + " " + op[operation] + " " +
num2.ToString() + " = __.";

}
else if (curCount == answer)
{

equation = "Correct: " + num1.ToString() + " " +
op[operation] + " " + num2.ToString() + " = " + curCount.ToString() +
".";

StartCoroutine(Repeat(Scene.Equation_Saber));

//Before Coroutine add something saying if (completed ==
desiredNoOfRounds){App.Quit); or jump to new scene with performance
metrics

}
else
{

equation = "Incorrect. Correct Answer is: " + num1.ToString()
+ " " + op[operation] + " " + num2.ToString() + " = " + answer.ToString()
+ ".";

StartCoroutine(Repeat(Scene.Equation_Saber));
//Application.Quit();

}

}

void OnGUI()
{

GUIStyle fontS = new GUIStyle();
fontS.fontSize = 50;
fontS.normal.textColor = Color.blue;
//GUI.contentColor = Color.blue;
GUI.Label(new Rect(0, 0, 200, 200), equation + "\n" + "Current

Value: " + curCount + "\n" + "Score: " + correct + "/" + completed,
fontS);

}

public void updateCurrent(int rayVal, int op)
{

if (op == 0)
{

if (curCount > answer)
{

103

curCount = rayVal; //Resets on going over value...
Temporary until scene manager is created

}
else if (curCount == answer)
{

curCount = answer;
}
else
{

curCount += rayVal;
}

}
else
{

curCount -= rayVal;
}
Debug.Log("count = " + curCount + " val = " + rayVal + " op = " +

op);
}

public IEnumerator Repeat(Scene scene)
{

yield return new WaitForSeconds(2f);

completed++;

if (completed > 2)
{

Application.Quit(); //This works on Build and Run
}

if (curCount == answer)
{

correct++;
}

SceneManager.LoadScene(scene.ToString()); //Loads scene again
}

}

secondCameraMovement.cs:

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

104

using System;
using EmotivUnityPlugin;

public class secondCameraMovement : MonoBehaviour
{

public float moveSpeed = 5000f;

float rotationX = 0F;
float epocX;
float epocY;

private Channel_t xDirection = Channel_t.CHAN_Q0;
private Channel_t yDirection = Channel_t.CHAN_Q1;
private Channel_t zDirection = Channel_t.CHAN_Q2;
private Channel_t wDirection = Channel_t.CHAN_Q3;
double[] intx, inty, intz, intw;

DataStreamManager ds = DataStreamManager.Instance;

void Start()
{

intx = ds.GetMotionData(xDirection);
inty = ds.GetMotionData(yDirection);
intz = ds.GetMotionData(zDirection);
intw = ds.GetMotionData(wDirection);

}

double[] inX, inY, inZ, inW;
float inputX, inputY, inputZ, inputW;
float smoot = 5.0f;
// Update is called once per frame
void Update()
{

inX = ds.GetMotionData(xDirection);
inY = ds.GetMotionData(yDirection);
inZ = ds.GetMotionData(zDirection);
inW = ds.GetMotionData(wDirection);

if (inZ != null && inZ.Length > 0 && inW != null && inW.Length >
0 && inX != null && inX.Length > 0 && inY != null && inY.Length > 0)

{

Quaternion cameraRotation = new Quaternion((float)(inX[0]) ,
(float)(inY[0]), (float)(inZ[0]), (float)(inW[0]));

var qEul = cameraRotation.eulerAngles;

105

Quaternion tempEul = new Quaternion((float)intx[0],
(float)inty[0], (float)intz[0], (float)intw[0]);

var temp = tempEul.eulerAngles;
Quaternion corrected = Quaternion.Euler(qEul.z - temp.z, 0,

0);
Quaternion yaw = Quaternion.Euler(0, qEul.x - temp.x, 0);

transform.rotation = yaw;
transform.Rotate(transform.rotation.x, transform.rotation.y +

270, transform.rotation.x);
}

}
}

CSVReadWrite.cs:

using System.Collections;
using System.Collections.Generic;
using System.Text;
using System.IO;
using UnityEngine;
using EmotivUnityPlugin;

public class CsvReadWrite : MonoBehaviour
{

private List<string[]> rowData = new List<string[]>();
public Vector3 lastposition;

DataStreamManager ds = DataStreamManager.Instance;

void Start()
{

lastposition = transform.position;

string[] rowDataTemp = new string[10];

rowDataTemp[0] = "Stress Level";
rowDataTemp[1] = "Engagement Level";
rowDataTemp[2] = "Interest Level";
rowDataTemp[3] = "Excitement Level";
rowDataTemp[4] = "Focus Level";
rowDataTemp[5] = "Relaxation Level";

rowDataTemp[6] = "Q0";

106

rowDataTemp[7] = "Q1";
rowDataTemp[8] = "Q2";
rowDataTemp[9] = "Q3";

rowData.Add(rowDataTemp);
}

void Update()
{

Save();
}

void Save()
{

string[] rowDataTemp = new string[10];

rowDataTemp[0] = "0";
rowDataTemp[1] = "0";
rowDataTemp[2] = "0";
rowDataTemp[3] = "0";
rowDataTemp[4] = "0";
rowDataTemp[5] = "0";

rowDataTemp[6] =
ds.GetMotionData(Channel_t.CHAN_Q0)[0].ToString();

rowDataTemp[7] =
ds.GetMotionData(Channel_t.CHAN_Q1)[0].ToString();

rowDataTemp[8] =
ds.GetMotionData(Channel_t.CHAN_Q2)[0].ToString();

rowDataTemp[9] =
ds.GetMotionData(Channel_t.CHAN_Q3)[0].ToString();

//rowDataTemp[2] = transform.position.z.ToString();

rowData.Add(rowDataTemp);

string[][] output = new string[rowData.Count][];

for (int i = 0; i < output.Length; i++)
{

output[i] = rowData[i];
}

int length = output.GetLength(0);
string delimiter = ",";

107

StringBuilder sb = new StringBuilder();

for (int index = 0; index < length; index++)
sb.AppendLine(string.Join(delimiter, output[index]));

string filePath = getPath();

StreamWriter outStream = System.IO.File.CreateText(filePath);
outStream.WriteLine(sb);
outStream.Close();

}

private string getPath()
{

return Application.dataPath + "/CSV/" + "Saved_data.csv";
}

}

rayCastTest.cs:

using Leap;
using Leap.Unity;
using System.Collections.Generic;
using UnityEngine;

public class rayCastTest : MonoBehaviour
{

Hand leapHand;
FingerModel finger;
HandModel handModel;
public LayerMask layer;

// Use this for initialization
void Start()
{

/*Controller controller = new Controller();
Frame frame = controller.Frame(); // controller is a Controller

object
if (frame.Hands.Count > 0)
{

List<Hand> hands = frame.Hands;
leapHand = hands[0];

}

108

finger = leapHand.Fingers;
Finger.FingerType fingerType = finger.Type;*/
handModel = GetComponent<HandModel>();
leapHand = handModel.GetLeapHand();
if (leapHand == null) Debug.LogError("No leap_hand founded");

}

// Update is called once per frame
void Update()
{

Vector3 fwd = transform.TransformDirection(Vector3.right);
RaycastHit hit;

for (int i = 0; i < HandModel.NUM_FINGERS; i++)
{

finger = handModel.fingers[i];
if (Physics.Raycast(finger.GetTipPosition(), fwd, out hit,

10, layer))
{

//Send the value of the gameObject to GameManger for
incrementing

gameManager gmTemp;
int temp =

hit.transform.gameObject.GetComponent<boxMovement>().getValue();
int tempOp =

hit.transform.gameObject.GetComponent<boxMovement>().getOp();
Debug.Log(" op in raycast = " + tempOp);
gmTemp = GameObject.FindObjectOfType<gameManager>();
Debug.Log(temp.ToString());
gmTemp.updateCurrent(temp, tempOp);
Destroy(hit.transform.gameObject);
break;

}
Debug.DrawRay(finger.GetTipPosition(),

finger.GetRay().direction, Color.red, Time.deltaTime, true);
}

}
}

Spawner_Script.cs:

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

109

public class Spawner_Script : MonoBehaviour
{

public GameObject[] cubes;
public Transform[] points;
public float beat = (60 / 130);
private float timer;
public double speed;
public int pause;

// Start is called before the first frame update
void Start()
{

speed = 2;
pause = 0;

}

// Update is called once per frame
void Update()
{

if (timer > beat)
{

if (pause == 0)
{

int cubeOp = Random.Range(0, 2);
GameObject cube = Instantiate(cubes[cubeOp],

points[Random.Range(0, 4)]);
cube.GetComponent<boxMovement>().setOp(cubeOp);
//cube.GetComponent<boxMovement>().setSpeed(speed);
cube.transform.localPosition = Vector3.zero;
//cube.transform.Rotate(transform.right, 90 *

Random.Range(0, 4));

}
timer -= beat;

}
timer += Time.deltaTime;

}

public void setPause()
{

pause = 1;
}
public void setStart()
{

pause = 0;

110

}
public void togglePause()
{

if (pause == 0)
pause = 1;

else
pause = 0;

}
public void setSpeed(double x)
{

if (x > 0)
speed = x;

else
speed = 2;

}
}

SettingsMenu.cs:

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using EmotivUnityPlugin;

public class SettingsMenu : MonoBehaviour
{

// values to move to teacher hub
// motion data and performance metric data
private DataStreamManager ds = DataStreamManager.Instance;
private static double[] emptyDoub = { };
public double[] pmData;
public GameObject cube;
public double oldSpeed, newSpeed;
// Start is called before the first frame update
void Start()
{

pmData = new double[7];
oldSpeed = 2;
newSpeed = 2;

}

// Update is called once per frame
void Update()
{

if (oldSpeed != newSpeed)
{

111

Debug.Log(pmData[0] + pmData[1] + pmData[2] + pmData[3] +
pmData[4] + "PM data");

cube.GetComponent<boxMovement>().setSpeed((float)newSpeed);
oldSpeed = newSpeed;
getPMDataList();
Debug.Log(pmData);

}

}

public double[] getPMDataList()
{

double[] dat = new double[7];
int counter = 0;
dat[0] = ds.GetPMData("eng");
dat[1] = ds.GetPMData("exc");
dat[2] = ds.GetPMData("lex");
dat[3] = ds.GetPMData("str");
dat[4] = ds.GetPMData("rel");
dat[5] = ds.GetPMData("int");
dat[6] = ds.GetPMData("foc");
return dat; // check if empty

}

public void setSpeed(int x)
{

newSpeed = x;
}

}

setText.cs:
using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using TMPro;

public class textSet : MonoBehaviour
{

// Start is called before the first frame update

private TextMeshProUGUI test;
int score;
//Calls boxMovement script and uses getter to obtain value to display

as text
private boxMovement bmTemp;

112

void Start()
{

test = FindObjectOfType<TextMeshProUGUI>();
bmTemp = GameObject.FindObjectOfType<boxMovement>();

}

// Update is called once per frame
void Update()
{

score = bmTemp.getValue();
test.SetText(score.ToString());

}
}

boxMovement:

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class boxMovement : MonoBehaviour
{

static public float speed; //Speed of the box movement
private int value; //Holds a random value for box
private int op; // operation of the box -- 0 = add 1 = sub

// Start is called before the first frame update
void Start()
{

//speed = 2.0f;
Object.Destroy(gameObject, 25f);
value = Random.Range(1, 10);
//op = 0;

}

// Update is called once per frame
void Update()
{

transform.position += Time.deltaTime * transform.forward * speed;
}

113

public float getSpeed()
{

return speed;
}

public void setSpeed(float x)
{

speed = x;

}

public int getValue()
{

return value;
}
public void setOp(int x)
{

op = x;
//Debug.Log("operator = " + x);

}
public int getOp()
{

return op;
}

}

EventPlayer.cs: (Moving variables across the Network)

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using MLAPI;
using VivoxUnity;
using MLAPI.Messaging;
using MLAPI.NetworkVariable;

public class EventPlayer : NetworkBehaviour
{

public NetworkVariable<double> stress = new
NetworkVariable<double>(new NetworkVariableSettings { WritePermission =
NetworkVariablePermission.Everyone, ReadPermission =

114

NetworkVariablePermission.Everyone });
public NetworkVariable<double> engagement = new

NetworkVariable<double>(new NetworkVariableSettings { WritePermission =
NetworkVariablePermission.Everyone, ReadPermission =
NetworkVariablePermission.Everyone });

public NetworkVariable<double> focus = new
NetworkVariable<double>(new NetworkVariableSettings { WritePermission =
NetworkVariablePermission.Everyone, ReadPermission =
NetworkVariablePermission.Everyone });

public NetworkVariable<double> interest = new
NetworkVariable<double>(new NetworkVariableSettings { WritePermission =
NetworkVariablePermission.Everyone, ReadPermission =
NetworkVariablePermission.Everyone });

public NetworkVariable<double> relaxation = new
NetworkVariable<double>(new NetworkVariableSettings { WritePermission =
NetworkVariablePermission.Everyone, ReadPermission =
NetworkVariablePermission.Everyone });

public NetworkVariable<double> excitement = new
NetworkVariable<double>(new NetworkVariableSettings { WritePermission =
NetworkVariablePermission.Everyone, ReadPermission =
NetworkVariablePermission.Everyone });

public NetworkVariable<double> speed = new NetworkVariable<double>();
private double[] pmData = new double[7];
int randomVal;

void Start()
{

randomVal = Random.Range(0, 100);
if (NetworkManager.Singleton.IsClient)
{

pmData = FindObjectOfType<SettingsMenu>().pmData;

for (int i = 0; i < pmData.Length; i++)
{

if (pmData[i] == -1)
{

continue;
}
if (i == 0)
{

engagement.Value = pmData[i];
}
if (i == 1)
{

excitement.Value = pmData[i];

115

}
if (i == 2)
{

}
if (i == 3)
{

stress.Value = pmData[i];
}
if (i == 4)
{

relaxation.Value = pmData[i];
}
if (i == 5)
{

interest.Value = pmData[i];
}
if (i == 6)
{

focus.Value = pmData[i];
}

}
FindObjectOfType<SettingsMenu>().newSpeed = speed.Value;

}
}

// Update is called once per frame
void Update()
{

pmData = FindObjectOfType<SettingsMenu>().getPMDataList();

for (int i = 0; i < pmData.Length; i++)
{

if (pmData[i] == -1)
{

continue;
}
if (i == 0)
{

engagement.Value = pmData[i];
}
if (i == 1)
{

excitement.Value = pmData[i];
}

116

if (i == 2)
{

}
if (i == 3)
{

stress.Value = pmData[i];
}
if (i == 4)
{

relaxation.Value = pmData[i];
}
if (i == 5)
{

interest.Value = pmData[i];
}
if (i == 6)
{

focus.Value = pmData[i];
}

}
FindObjectOfType<SettingsMenu>().newSpeed = speed.Value;

}
}

MenuScript.cs:

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.Networking;
using MLAPI;
using MLAPI.Transports.UNET;
using VivoxUnity;
using UnityEngine.SceneManagement;
using UnityEngine.UI;

public class MenuScript : MonoBehaviour
{

public GameObject menuPanel;
public GameObject mainPanel;
public InputField inputField,HostField;
VivoxUnity.Client client = new VivoxUnity.Client();
string student1Channel, student2Channel,

student3Channel,playerName;

117

VivoxVoiceManager vivox;
private void Start()

{
mainPanel.SetActive(false);
menuPanel.SetActive(true);

}

private void Update()
{

List<MLAPI.Connection.NetworkClient> clients =
NetworkManager.Singleton.ConnectedClientsList;

if (clients.Count == 1)
{

var player =
clients[0].PlayerObject.GetComponent<EventPlayer>();

}
else if (clients.Count == 2)

{
var player =

clients[0].PlayerObject.GetComponent<EventPlayer>();
player =

clients[1].PlayerObject.GetComponent<EventPlayer>();
}

}
public void Host()
{

vivox = VivoxVoiceManager.Instance;
vivox = VivoxVoiceManager.Instance;
client.Uninitialize();
client.Initialize();
playerName = "teacher";
vivox.Login(playerName);
NetworkManager.Singleton.StartServer();
menuPanel.SetActive(false);
mainPanel.SetActive(true);

}

public void Join()
{

//clicked join
if (inputField.text.Length <= 0)

{

NetworkManager.Singleton.GetComponent<UNetTransport>().ConnectAddress =

118

"52.147.204.115";
}

else
{

NetworkManager.Singleton.GetComponent<UNetTransport>().ConnectAddress =
inputField.text;

}
NetworkManager.Singleton.StartClient();
menuPanel.SetActive(false);
mainPanel.SetActive(true);

}

public void SceneChange()
{

mainPanel.SetActive(false);
}

public void joinChannel1()
{

vivox.JoinChannel("student0_channel",
ChannelType.NonPositional, VivoxVoiceManager.ChatCapability.AudioOnly);

}

public void joinChannel2()
{

vivox.JoinChannel("student1_channel",
ChannelType.NonPositional, VivoxVoiceManager.ChatCapability.AudioOnly);

}
}

EventManager.cs:

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.UI;
using MLAPI.NetworkVariable;
using MLAPI;

public class EventManager : MonoBehaviour
{

public Slider stressBox, engagementBox, focusBox, interestBox,
relaxationBox, excitementBox, stressBox2, engagementBox2, focusBox2,

119

interestBox2, relaxationBox2, excitementBox2;
// Start is called before the first frame update
private Color green = Color.green;
public NetworkVariableDouble stressnet = new

NetworkVariableDouble(new NetworkVariableSettings { WritePermission =
NetworkVariablePermission.Everyone });

public NetworkVariable<double> engagementNet = new
NetworkVariable<double>(new NetworkVariableSettings { WritePermission =
NetworkVariablePermission.Everyone });

public NetworkVariable<double> focusNet = new
NetworkVariable<double>(new NetworkVariableSettings { WritePermission =
NetworkVariablePermission.Everyone });

public NetworkVariable<double> interestNet = new
NetworkVariable<double>(new NetworkVariableSettings { WritePermission =
NetworkVariablePermission.Everyone });

public NetworkVariable<double> relaxationNet = new
NetworkVariable<double>(new NetworkVariableSettings { WritePermission =
NetworkVariablePermission.Everyone });

public NetworkVariable<double> excitementNet = new
NetworkVariable<double>(new NetworkVariableSettings { WritePermission =
NetworkVariablePermission.Everyone });

public NetworkVariable<double> stressnet2 = new
NetworkVariable<double>(new NetworkVariableSettings { WritePermission =
NetworkVariablePermission.Everyone });

public NetworkVariable<double> engagementNet2 = new
NetworkVariable<double>(new NetworkVariableSettings { WritePermission =
NetworkVariablePermission.Everyone });

public NetworkVariable<double> focusNet2 = new
NetworkVariable<double>(new NetworkVariableSettings { WritePermission =
NetworkVariablePermission.Everyone });

public NetworkVariable<double> interestNet2 = new
NetworkVariable<double>(new NetworkVariableSettings { WritePermission =
NetworkVariablePermission.Everyone });

public NetworkVariable<double> relaxationNet2 = new
NetworkVariable<double>(new NetworkVariableSettings { WritePermission =
NetworkVariablePermission.Everyone });

public NetworkVariable<double> excitementNet2 = new
NetworkVariable<double>(new NetworkVariableSettings { WritePermission =
NetworkVariablePermission.Everyone });

public NetworkVariable<double> speed = new NetworkVariable<double>();
public NetworkVariable<double> speed2 = new

NetworkVariable<double>();

private Color red = Color.red;

120

public Image Fill1,Fill2, Fill3, Fill4, Fill5, Fill6, Fill7, Fill8,
Fill9, Fill10,Fill11,Fill12;

void Start()
{

speed.Value = 2.0;
speed2.Value = 2.0;

}

public void IncreaseSpeed()
{

speed.Value += .2f;
if (speed.Value > 2.5f)
{

speed.Value = 2.5f;
}

}
public void DecreaseSpeed()
{

speed.Value -= .2f;
if (speed.Value < .5f)
{

speed.Value = .5f;
}

}
public void IncreaseSpeedtwo()
{

speed.Value += .2f;
if (speed.Value > 2.5f)
{

speed.Value = 2.5f;
}

}
public void DecreaseSpeedtwo()
{

speed.Value -= .2f;
if (speed.Value < .5f)
{

speed.Value = .5f;
}

}
// Update is called once per frame
void Update()
{

if (NetworkManager.Singleton.IsServer)

121

{
List<MLAPI.Connection.NetworkClient> clients =

NetworkManager.Singleton.ConnectedClientsList;
for (int i = 0; i < clients.Count; i++)
{

Debug.Log(clients[i].PlayerObject.NetworkObjectId + "
client");

}

if (clients.Count == 1)
{

Debug.Log("Someone has joined");
var player =

clients[0].PlayerObject.GetComponent<EventPlayer>();

stressnet = player.stress;
stressBox.value = (float)stressnet.Value;
engagementNet = player.engagement;
engagementBox.value = (float)engagementNet.Value;
focusNet = player.focus;
focusBox.value = (float)focusNet.Value;
interestNet = player.interest;
interestBox.value = (float)interestNet.Value;
relaxationNet = player.relaxation;
relaxationBox.value = (float)relaxationNet.Value;
excitementNet = player.excitement;
excitementBox.value = (float)excitementNet.Value;
player.speed.Value = speed.Value;
Debug.Log(player.speed.Value + " speed " +

player.stress.Value + " stress " + player.engagement.Value+ " engagement
");

}
if (clients.Count == 2)
{

var player =
clients[0].PlayerObject.GetComponent<EventPlayer>();

stressnet = player.stress;
stressBox.value = (float)stressnet.Value;
engagementNet = player.engagement;
engagementBox.value = (float)engagementNet.Value;
focusNet = player.focus;
focusBox.value = (float)focusNet.Value;
interestNet = player.interest;
interestBox.value = (float)interestNet.Value;

122

relaxationNet = player.relaxation;
relaxationBox.value = (float)relaxationNet.Value;
excitementNet = player.excitement;
excitementBox.value = (float)excitementNet.Value;
player.speed.Value = speed.Value;
player =

clients[1].PlayerObject.GetComponent<EventPlayer>();
stressnet2 = player.stress;
stressBox2.value = (float)stressnet2.Value;
engagementNet2 = player.engagement;
engagementBox2.value = (float)engagementNet2.Value;
focusNet2 = player.focus;
focusBox2.value = (float)focusNet2.Value;
interestNet2 = player.interest;
interestBox2.value = (float)interestNet2.Value;
relaxationNet2 = player.relaxation;
relaxationBox2.value = (float)relaxationNet2.Value;
excitementNet2 = player.excitement;
excitementBox2.value = (float)excitementNet2.Value;
player.speed.Value = speed2.Value;

}
Fill1.color = Color.Lerp(green, red, stressBox.value);
Fill2.color = Color.Lerp(red, green, engagementBox.value);
Fill3.color = Color.Lerp(red, green, focusBox.value);
Fill4.color = Color.Lerp(red, green, interestBox.value);
Fill5.color = Color.Lerp(red, green, relaxationBox.value);
Fill6.color = Color.Lerp(red, green, excitementBox.value);
Fill7.color = Color.Lerp(green, red, stressBox2.value);
Fill8.color = Color.Lerp(red, green, engagementBox2.value);
Fill9.color = Color.Lerp(red, green, focusBox2.value);
Fill10 .color = Color.Lerp(red, green, interestBox2.value);
Fill11.color = Color.Lerp(red, green, relaxationBox2.value);
Fill12.color = Color.Lerp(red, green, excitementBox2.value);

}

}

}

III.Cortex App API

Get cortex Info:
{"id":1,"jsonrpc":"2.0","method":"getCortexInfo"}

123

Get User login:
{
"id": 1,
"jsonrpc": "2.0",
"method": "getUserLogin"
}

Approve Client:

{
"id": 1,
"jsonrpc": "2.0",
"method": "requestAccess",
"params": {
"clientId": "xxx",
"clientSecret": "xxx"
}
}

Check If access granted:
{
"id": 1,
"jsonrpc": "2.0",
"method": "hasAccessRight",
"params": {
"clientId": "xxx",
"clientSecret": "xxx"
}
}

Get new corext token:
{
"id": 1,
"jsonrpc": "2.0",
"method": "authorize",
"params": {
"clientId": "UxGJKhyNwU8Sv18ETanYUz0fSfQDiuIrd2YxNfu5",
"clientSecret":
"WKuBJFmjR2QE7Dna49UBGGZWy0NvlSJqXki4Z76sdI9PsaPhVrTbyvvnK5azog32PVvBHNcC
65dslbIDsTDY5o92AhVql56KCFiZ5LQ039oQCfz9cjGYWGrbQekiPIRz"
}
}

https://github.com/Emotiv/cortex-v2-example

124

getUserInformation:
{
"id": 1,
"jsonrpc": "2.0",
"method": "getUserInformation",
"params": {
"cortexToken": "xxx"
}
}

getLicenseInfo:
{
"id": 1,
"jsonrpc": "2.0",
"method": "getLicenseInfo",
"params": {
"cortexToken": "xxx"
}
}

Query headsets
{
"id": 1,
"jsonrpc": "2.0",
"method": "queryHeadsets"
}

Update headset positioning:
{
"id": 1,
"jsonrpc": "2.0",
"method": "updateHeadsetCustomInfo",
"params": {
"cortexToken": "xxx",
"headbandPosition": "top",
"headsetId": "EPOCX-12345678"
}
}

To change settings:
{
"id": "EPOCPLUS-3B9AXXXX",
"status": "connected",

125

"connectedBy": "dongle",
"customName": "",
"dongle": "6ff",
"firmware": "625",
"motionSensors": [
"GYROX",
"GYROY",
"GYROZ",
"ACCX",
"ACCY",
"ACCZ",
"MAGX",
"MAGY",
"MAGZ"
],
"sensors": [
"AF3",
"F7",
"F3",
"FC5",
"T7",
"P7",
"O1",
"O2",
"P8",
"T8",
"FC6",
"F4",
"F8",
"AF4"
],
"settings": {
"eegRate": 256,
"eegRes": 16,
"memsRate": 64,
"memsRes": 16,
"mode": "EPOCPLUS"
}
}

Create Session:
{

"id": 1,
"jsonrpc": "2.0",
"method": "createSession",
"params": {

"cortexToken":
"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhcHBJZCI6ImNvbS5icmVuZDM0NS5kYXR

126

hc3RyZWFtIiwiYXBwVmVyc2lvbiI6IjEuMCIsImV4cCI6MTYxMjc5NzY1NywibmJmIjoxNjEy
NTM4NDU3LCJ1c2VySWQiOiJmZmI1NDRhZi05NzhkLTQ0MDYtODY4YS0yZDUyZGIwOGIxNTIiL
CJ1c2VybmFtZSI6ImJyZW5kMzQ1IiwidmVyc2lvbiI6IjIuMCJ9.ntIgN4Y5RMhAmcqnM++vs
hNln2IPqOEVTRPyIQEZbz8=",

"headset": "EPOCPLUS-4A2C0128",
"status": "open"

}
}

To export a csv:
{
"id": 1,
"jsonrpc": "2.0",
"method": "createRecord",
"params": {
"cortexToken":
"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhcHBJZCI6ImNvbS5icmVuZDM0NS5kYXR
hc3RyZWFtIiwiYXBwVmVyc2lvbiI6IjEuMCIsImV4cCI6MTYxMjc5NzY1NywibmJmIjoxNjEy
NTM4NDU3LCJ1c2VySWQiOiJmZmI1NDRhZi05NzhkLTQ0MDYtODY4YS0yZDUyZGIwOGIxNTIiL
CJ1c2VybmFtZSI6ImJyZW5kMzQ1IiwidmVyc2lvbiI6IjIuMCJ9.ntIgN4Y5RMhAmcqnM++vs
hNln2IPqOEVTRPyIQEZbz8=",
"session": "b2250bd9-cbb7-49a7-99db-a8115bf0c147",

"title": "brendan"
}
}

Subscribe:
{
"id": 1,
"jsonrpc": "2.0",
"method": "subscribe",
"params": {
"cortexToken":
"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhcHBJZCI6ImNvbS5icmVuZDM0NS5kYXR
hc3RyZWFtIiwiYXBwVmVyc2lvbiI6IjEuMCIsImV4cCI6MTYxMjc5NzY1NywibmJmIjoxNjEy
NTM4NDU3LCJ1c2VySWQiOiJmZmI1NDRhZi05NzhkLTQ0MDYtODY4YS0yZDUyZGIwOGIxNTIiL
CJ1c2VybmFtZSI6ImJyZW5kMzQ1IiwidmVyc2lvbiI6IjIuMCJ9.ntIgN4Y5RMhAmcqnM++vs
hNln2IPqOEVTRPyIQEZbz8=",
"session": "3668e75c-d908-4e1e-9beb-0089da5e129a",
"streams": ["eeg","mot"]
}
}

